These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23218169)

  • 1. An accurate analysis of the radiation characteristics of a plane piston transducer with phase apodization for focusing.
    Warriner RK; Cobbold RS
    Ultrasonics; 2013 Mar; 53(3):745-53. PubMed ID: 23218169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for estimation of velocity vectors.
    Jensen JA; Munk P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):837-51. PubMed ID: 18244236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast computation of the acoustic field for ultrasound elements.
    Güven HE; Miller E; Cleveland RO
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1903-12. PubMed ID: 19811993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of propagating and evanescent waves on the focusing properties of zone plate structures.
    Li JH; Cheng YW; Chue YC; Lin CH; Sheu TW
    Opt Express; 2009 Oct; 17(21):18462-8. PubMed ID: 20372576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of ultrasonic wave transmission through a fluid-solid interface.
    Belgroune D; de Belleval JF; Djelouah H
    Ultrasonics; 2008 Jul; 48(3):220-30. PubMed ID: 18328524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to calculate the field radiated from arbitrarily structured transducer arrays.
    Piwakowski B; Sbai K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):422-40. PubMed ID: 18238440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.
    Warriner RK; Cobbold RS
    Ultrasonics; 2012 Apr; 52(4):503-7. PubMed ID: 22133736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical detection of evanescent ultrasound waves in water.
    Nunez I; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):511-9. PubMed ID: 18244201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fresnel approximations for acoustic fields of rectangularly symmetric sources.
    Mast TD
    J Acoust Soc Am; 2007 Jun; 121(6):3311-22. PubMed ID: 17552683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field time-reversal amplification.
    Conti SG; Roux P; Kuperman WA
    J Acoust Soc Am; 2007 Jun; 121(6):3602-6. PubMed ID: 17552711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
    Chang J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):327-37. PubMed ID: 21342818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic field radiated into a transversely isotropic solid from a small aperture spherical surface.
    Every AG; Wenke I; Aebi L; Dual J
    Ultrasonics; 2011 Oct; 51(7):824-30. PubMed ID: 21514947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional analysis of scattering by pressure-release plane surfaces and the validity of the image solution.
    Welton PJ
    J Acoust Soc Am; 2012 Jan; 131(1):69-79. PubMed ID: 22280572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient angular spectrum decomposition of acoustic sources. I. Theory.
    Orofino DP; Pedersen PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(3):238-49. PubMed ID: 18263178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic aperture techniques with a virtual source element.
    Frazier CH; O'Brien WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):196-207. PubMed ID: 18244172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation and backpropagation for ultrasonic wavefront design.
    Liu DL; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):1-13. PubMed ID: 18244096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The focusing of surface-acoustic-waves launched from a slanted chirped transducer. I. Isotropic substrate.
    Barnard ME; Lancaster MJ; Paige ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):565-73. PubMed ID: 18290235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity.
    Lashkari B; Mandelis A
    Rev Sci Instrum; 2011 Sep; 82(9):094903. PubMed ID: 21974612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.