These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 23218380)
1. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system. Idström A; Brelid H; Nydén M; Nordstierna L Carbohydr Polym; 2013 Jan; 92(1):881-4. PubMed ID: 23218380 [TBL] [Abstract][Full Text] [Related]
2. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Wan J; Wang Y; Xiao Q Bioresour Technol; 2010 Jun; 101(12):4577-83. PubMed ID: 20181478 [TBL] [Abstract][Full Text] [Related]
8. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology. Sheikhi A; Yang H; Alam MN; van de Ven TG J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560 [TBL] [Abstract][Full Text] [Related]
9. The surface structure of well-ordered native cellulose fibrils in contact with water. Malm E; Bulone V; Wickholm K; Larsson PT; Iversen T Carbohydr Res; 2010 Jan; 345(1):97-100. PubMed ID: 19926077 [TBL] [Abstract][Full Text] [Related]
10. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Jin H; Zha C; Gu L Carbohydr Res; 2007 May; 342(6):851-8. PubMed ID: 17280653 [TBL] [Abstract][Full Text] [Related]
11. CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Pu Y; Ziemer C; Ragauskas AJ Carbohydr Res; 2006 Apr; 341(5):591-7. PubMed ID: 16442511 [TBL] [Abstract][Full Text] [Related]
12. Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Mori T; Chikayama E; Tsuboi Y; Ishida N; Shisa N; Noritake Y; Moriya S; Kikuchi J Carbohydr Polym; 2012 Oct; 90(3):1197-203. PubMed ID: 22939331 [TBL] [Abstract][Full Text] [Related]
13. Hornification of cellulose-rich materials - A kinetically trapped state. Sellman FA; Benselfelt T; Larsson PT; Wågberg L Carbohydr Polym; 2023 Oct; 318():121132. PubMed ID: 37479442 [TBL] [Abstract][Full Text] [Related]
14. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305 [TBL] [Abstract][Full Text] [Related]
16. CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Larsson PT; Hult EL; Wickholm K; Pettersson E; Iversen T Solid State Nucl Magn Reson; 1999 Oct; 15(1):31-40. PubMed ID: 10903082 [TBL] [Abstract][Full Text] [Related]
17. Elucidating the hornification mechanism of cellulosic fibers during the process of thermal drying. Mo W; Chen K; Yang X; Kong F; Liu J; Li B Carbohydr Polym; 2022 Aug; 289():119434. PubMed ID: 35483847 [TBL] [Abstract][Full Text] [Related]
18. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Bootten TJ; Harris PJ; Melton LD; Newman RH Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435 [TBL] [Abstract][Full Text] [Related]
19. Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy. Zhang J; Higashi K; Limwikrant W; Moribe K; Yamamoto K Int J Pharm; 2012 Feb; 423(2):571-6. PubMed ID: 22138607 [TBL] [Abstract][Full Text] [Related]
20. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Gebauer D; Oliynyk V; Salajkova M; Sort J; Zhou Q; Bergström L; Salazar-Alvarez G Nanoscale; 2011 Sep; 3(9):3563-6. PubMed ID: 21850350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]