These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23218380)

  • 21. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.
    Miura K; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():189-95. PubMed ID: 26042706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The 2D MAS NMR spin-echo experiment: the determination of 13C-13C J couplings in a solid-state cellulose sample.
    Brown SP; Emsley L
    J Magn Reson; 2004 Nov; 171(1):43-7. PubMed ID: 15504680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp.
    Xu Q; Gao Y; Qin M; Wu K; Fu Y; Zhao J
    Int J Biol Macromol; 2013 Sep; 60():241-7. PubMed ID: 23751318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses.
    Luo X; Zhu JY
    Enzyme Microb Technol; 2011 Jan; 48(1):92-9. PubMed ID: 22112776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy.
    Popescu CM; Larsson PT; Tibirna CM; Vasile C
    Appl Spectrosc; 2010 Sep; 64(9):1054-60. PubMed ID: 20828443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration.
    Ding Q; Zeng J; Wang B; Tang D; Chen K; Gao W
    Carbohydr Polym; 2019 Mar; 207():44-51. PubMed ID: 30600026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-state selective (13)C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls.
    Foston M; Katahira R; Gjersing E; Davis MF; Ragauskas AJ
    J Agric Food Chem; 2012 Feb; 60(6):1419-27. PubMed ID: 22295909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid.
    Tang L; Huang B; Lu Q; Wang S; Ou W; Lin W; Chen X
    Bioresour Technol; 2013 Jan; 127():100-5. PubMed ID: 23131628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials.
    Filson PB; Dawson-Andoh BE
    Bioresour Technol; 2009 Apr; 100(7):2259-64. PubMed ID: 19109010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance investigation of the interactions between maleic anhydride grafted polypropylene and wood polymers.
    Rude E; Laborie MP
    Appl Spectrosc; 2008 May; 62(5):563-8. PubMed ID: 18498698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid.
    Liu Y; Wang H; Yu G; Yu Q; Li B; Mu X
    Carbohydr Polym; 2014 Sep; 110():415-22. PubMed ID: 24906774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-state 13C NMR study of na-cellulose complexes.
    Porro F; Bédué O; Chanzy H; Heux L
    Biomacromolecules; 2007 Aug; 8(8):2586-93. PubMed ID: 17661517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Carbohydr Res; 2008 Feb; 343(2):221-9. PubMed ID: 18048015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures.
    Keshk SM
    Carbohydr Polym; 2015 Jan; 115():658-62. PubMed ID: 25439945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fractional pretreatment of hybrid poplar for accelerated enzymatic hydrolysis: characterization of cellulose-enriched fraction.
    Meng LY; Kang SM; Zhang XM; Wu YY; Xu F; Sun RC
    Bioresour Technol; 2012 Apr; 110():308-13. PubMed ID: 22330601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose.
    Masuda K; Adachi M; Hirai A; Yamamoto H; Kaji H; Horii F
    Solid State Nucl Magn Reson; 2003 Jun; 23(4):198-212. PubMed ID: 12787903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral assignments and anisotropy data of cellulose I(alpha): 13C-NMR chemical shift data of cellulose I(alpha) determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains.
    Hesse-Ertelt S; Witter R; Ulrich AS; Kondo T; Heinze T
    Magn Reson Chem; 2008 Nov; 46(11):1030-6. PubMed ID: 18781703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.