These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 23218497)
1. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Jin L; Son Y; Yoon TK; Kang YJ; Kim W; Chung H Ecotoxicol Environ Saf; 2013 Feb; 88():9-15. PubMed ID: 23218497 [TBL] [Abstract][Full Text] [Related]
2. The effect of multi-walled carbon nanotubes on soil microbial activity. Chung H; Son Y; Yoon TK; Kim S; Kim W Ecotoxicol Environ Saf; 2011 May; 74(4):569-75. PubMed ID: 21310485 [TBL] [Abstract][Full Text] [Related]
3. Single-walled carbon nanotubes alter soil microbial community composition. Jin L; Son Y; DeForest JL; Kang YJ; Kim W; Chung H Sci Total Environ; 2014 Jan; 466-467():533-8. PubMed ID: 23933455 [TBL] [Abstract][Full Text] [Related]
4. Ecological Effects of Single-Walled Carbon Nanotubes on Soil Microbial Communities and Soil Fertility. Qian H; Ke M; Qu Q; Li X; Du B; Lu T; Sun L; Pan X Bull Environ Contam Toxicol; 2018 Oct; 101(4):536-542. PubMed ID: 30209559 [TBL] [Abstract][Full Text] [Related]
5. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes. Chen Q; Wang H; Yang B; He F; Han X; Song Z Sci Total Environ; 2015 Feb; 505():649-57. PubMed ID: 25461068 [TBL] [Abstract][Full Text] [Related]
6. Effects of graphene oxides on soil enzyme activity and microbial biomass. Chung H; Kim MJ; Ko K; Kim JH; Kwon HA; Hong I; Park N; Lee SW; Kim W Sci Total Environ; 2015 May; 514():307-13. PubMed ID: 25668283 [TBL] [Abstract][Full Text] [Related]
7. Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil. Shan J; Ji R; Yu Y; Xie Z; Yan X Sci Rep; 2015 Oct; 5():16000. PubMed ID: 26515132 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil. Zhou W; Shan J; Jiang B; Wang L; Feng J; Guo H; Ji R Chemosphere; 2013 Jan; 90(2):527-34. PubMed ID: 22963879 [TBL] [Abstract][Full Text] [Related]
9. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Lindberg HK; Falck GC; Singh R; Suhonen S; Järventaus H; Vanhala E; Catalán J; Farmer PB; Savolainen KM; Norppa H Toxicology; 2013 Nov; 313(1):24-37. PubMed ID: 23266321 [TBL] [Abstract][Full Text] [Related]
10. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Wang X; Qu R; Huang Q; Wei Z; Wang Z Aquat Toxicol; 2015 Mar; 160():142-50. PubMed ID: 25625523 [TBL] [Abstract][Full Text] [Related]
11. Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils. Petersen EJ; Pinto RA; Zhang L; Huang Q; Landrum PF; Weber WJ Environ Sci Technol; 2011 Apr; 45(8):3718-24. PubMed ID: 21434629 [TBL] [Abstract][Full Text] [Related]
12. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Fujita K; Fukuda M; Endoh S; Maru J; Kato H; Nakamura A; Shinohara N; Uchino K; Honda K Toxicol Lett; 2016 Aug; 257():23-37. PubMed ID: 27259835 [TBL] [Abstract][Full Text] [Related]
13. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Hao Y; Ma C; Zhang Z; Song Y; Cao W; Guo J; Zhou G; Rui Y; Liu L; Xing B Environ Pollut; 2018 Jan; 232():123-136. PubMed ID: 28947315 [TBL] [Abstract][Full Text] [Related]
14. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
15. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. Zhu B; Xia X; Xia N; Zhang S; Guo X Environ Sci Technol; 2014 Apr; 48(7):4086-95. PubMed ID: 24579825 [TBL] [Abstract][Full Text] [Related]
16. The role of different fractions of humic acid in the physiological response of amaranth treated with magnetic carbon nanotubes. Jia W; Zhai S; Ma C; Cao H; Wang C; Sun H; Xing B Ecotoxicol Environ Saf; 2019 Mar; 169():848-855. PubMed ID: 30597784 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the role of multi-walled carbon nanotubes in a corn-soil system: Plant growth, oxidative stress and heavy metal(loid)s behavior. Chen X; Chu S; Chi Y; Wang J; Wang R; You Y; Hayat K; Khalid M; Zhang D; Zhou P; Jiang J Plant Physiol Biochem; 2023 Jul; 200():107802. PubMed ID: 37269820 [TBL] [Abstract][Full Text] [Related]
18. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Hatami M Ecotoxicol Environ Saf; 2017 Aug; 142():274-283. PubMed ID: 28433592 [TBL] [Abstract][Full Text] [Related]
19. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136 [TBL] [Abstract][Full Text] [Related]
20. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Xu Y; Seshadri B; Sarkar B; Wang H; Rumpel C; Sparks D; Farrell M; Hall T; Yang X; Bolan N Sci Total Environ; 2018 Apr; 621():148-159. PubMed ID: 29179070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]