BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 23218663)

  • 1. Recent Advances in 2-Keto-l-gulonic Acid Production Using Mixed-Culture Fermentation and Future Prospects.
    Liu Q; Liu M; Chen W; Yuan H; Jiang Y; Huang D; Liu H; Wang T
    J Agric Food Chem; 2024 Jan; 72(3):1419-1428. PubMed ID: 38206567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodotorula mucilaginosa A8, a potential helper strain in a vitamin C microbial fermentation process.
    Zhang Q; Liao L; Lyu S
    J Basic Microbiol; 2024 Jul; 64(7):e2400132. PubMed ID: 38751099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Keto-L-gulonic acid inhibits the growth of Bacillus pumilus and Ketogulonicigenium vulgare.
    Zhang Q; Lyu S
    World J Microbiol Biotechnol; 2023 Jul; 39(10):257. PubMed ID: 37474882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies.
    Jia N; Ding MZ; Du J; Pan CH; Tian G; Lang JD; Fang JH; Gao F; Yuan YJ
    Sci Rep; 2016 Mar; 6():23068. PubMed ID: 26979567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the biosynthesis of 2-keto-L-gulonic acid through multi-strategy metabolic engineering in Pseudomonas putida KT2440.
    Li F; Wang CY; Wu YC; Zhang MY; Wang YJ; Zhou XY; Zhang YX
    Bioresour Technol; 2024 Jan; 392():130014. PubMed ID: 37956951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for direct production of vitamin C from D-glucose.
    Tian YS; Deng YD; Zhang WH; Yu-Wang ; Xu J; Gao JJ; Bo-Wang ; Fu XY; Han HJ; Li ZJ; Wang LJ; Peng RH; Yao QH
    Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):86. PubMed ID: 35996146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives.
    da Silva GAR; Oliveira SSS; Lima SF; do Nascimento RP; Baptista ARS; Fiaux SB
    World J Microbiol Biotechnol; 2022 Jun; 38(8):134. PubMed ID: 35688964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy.
    Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H
    Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing
    Chen Y; Liu L; Shan X; Du G; Zhou J; Chen J
    Front Bioeng Biotechnol; 2019; 7():385. PubMed ID: 31921801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced 2-keto-L-gulonic acid production by applying L-sorbose-tolerant helper strain in the co-culture system.
    Mandlaa ; Sun Z; Wang R; Han X; Xu H; Yang W
    AMB Express; 2018 Feb; 8(1):30. PubMed ID: 29492704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium.
    Jia N; Ding MZ; Zou Y; Gao F; Yuan YJ
    Sci Rep; 2017 Apr; 7():46759. PubMed ID: 28440340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-L-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening.
    Pan CH; Wang EX; Jia N; Dong XT; Liu Y; Ding MZ; Yuan YJ
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1031-1040. PubMed ID: 28283955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium.
    Jia N; Ding MZ; Gao F; Yuan YJ
    Sci Rep; 2016 Jun; 6():28794. PubMed ID: 27353048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation.
    Mandlaa ; Yang W; Liu C; Xu H
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):897-904. PubMed ID: 25860124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare.
    Ding MZ; Zou Y; Song H; Yuan YJ
    PLoS One; 2014; 9(4):e94889. PubMed ID: 24728527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture.
    Ma Q; Zou Y; Lv Y; Song H; Yuan YJ
    PLoS One; 2014; 9(3):e91789. PubMed ID: 24619085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of 2-keto-gulonic acid yield by serial subcultivation of co-cultures of Bacillus cereus and Ketogulonicigenium vulgare.
    Zou Y; Hu M; Lv Y; Wang Y; Song H; Yuan YJ
    Bioresour Technol; 2013 Mar; 132():370-3. PubMed ID: 23218663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-helper-strain co-culture system: a novel method for enhancement of 2-keto-L-gulonic acid production.
    Mandlaa ; Yang W; Han L; Wang Z; Xu H
    Biotechnol Lett; 2013 Nov; 35(11):1853-7. PubMed ID: 23881329
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.