These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23219451)

  • 1. Superresolution microscopy in heart - cardiac nanoscopy.
    Kohl T; Westphal V; Hell SW; Lehnart SE
    J Mol Cell Cardiol; 2013 May; 58():13-21. PubMed ID: 23219451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution imaging of EC coupling protein distribution in the heart.
    Soeller C; Baddeley D
    J Mol Cell Cardiol; 2013 May; 58():32-40. PubMed ID: 23159441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle.
    Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ
    J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the invisible: resolving cellular microcompartments by superresolution microscopy techniques.
    Hensel M; Klingauf J; Piehler J
    Biol Chem; 2013 Sep; 394(9):1097-113. PubMed ID: 23612657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding super-resolution nanoscopy and its biological applications in cell imaging.
    Hu D; Zhao B; Xie Y; Orr G; Li AD
    Phys Chem Chem Phys; 2013 Sep; 15(36):14856-61. PubMed ID: 23739871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superresolution imaging of biological nanostructures by spectral precision distance microscopy.
    Cremer C; Kaufmann R; Gunkel M; Pres S; Weiland Y; Müller P; Ruckelshausen T; Lemmer P; Geiger F; Degenhard S; Wege C; Lemmermann NA; Holtappels R; Strickfaden H; Hausmann M
    Biotechnol J; 2011 Sep; 6(9):1037-51. PubMed ID: 21910256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STED microscopy and its applications: new insights into cellular processes on the nanoscale.
    Müller T; Schumann C; Kraegeloh A
    Chemphyschem; 2012 Jun; 13(8):1986-2000. PubMed ID: 22374829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules.
    Yao Z; Carballido-López R
    Annu Rev Microbiol; 2014; 68():459-76. PubMed ID: 25002084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the physiology of heart failure through cellular and in vivo models-towards targeting of complex mechanisms.
    Lehnart SE
    Exp Physiol; 2013 Mar; 98(3):622-8. PubMed ID: 23064508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):498-520. PubMed ID: 23734025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding a new dimension to cardiac nano-architecture using electron microscopy: coupling membrane excitation to calcium signaling.
    Das T; Hoshijima M
    J Mol Cell Cardiol; 2013 May; 58():5-12. PubMed ID: 23201225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superresolution imaging for neuroscience.
    Tønnesen J; Nägerl UV
    Exp Neurol; 2013 Apr; 242():33-40. PubMed ID: 23063602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing cell structure and function with point-localization superresolution imaging.
    Sengupta P; Van Engelenburg S; Lippincott-Schwartz J
    Dev Cell; 2012 Dec; 23(6):1092-102. PubMed ID: 23237943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
    Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI
    Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long time-lapse nanoscopy with spontaneously blinking membrane probes.
    Takakura H; Zhang Y; Erdmann RS; Thompson AD; Lin Y; McNellis B; Rivera-Molina F; Uno SN; Kamiya M; Urano Y; Rothman JE; Bewersdorf J; Schepartz A; Toomre D
    Nat Biotechnol; 2017 Aug; 35(8):773-780. PubMed ID: 28671662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging optical nanoscopy techniques.
    Montgomery PC; Leong-Hoi A
    Nanotechnol Sci Appl; 2015; 8():31-44. PubMed ID: 26491270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens-based fluorescence nanoscopy.
    Eggeling C; Willig KI; Sahl SJ; Hell SW
    Q Rev Biophys; 2015 May; 48(2):178-243. PubMed ID: 25998828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence microscopy with super-resolved optical sections.
    Egner A; Hell SW
    Trends Cell Biol; 2005 Apr; 15(4):207-15. PubMed ID: 15817377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling.
    Gambardella J; Trimarco B; Iaccarino G; Santulli G
    Adv Exp Med Biol; 2018; 1067():373-385. PubMed ID: 28956314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.