These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 23219667)
21. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Brown DW; Cheung F; Proctor RH; Butchko RA; Zheng L; Lee Y; Utterback T; Smith S; Feldblyum T; Glenn AE; Plattner RD; Kendra DF; Town CD; Whitelaw CA Fungal Genet Biol; 2005 Oct; 42(10):848-61. PubMed ID: 16099185 [TBL] [Abstract][Full Text] [Related]
22. Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability. Covarelli L; Stifano S; Beccari G; Raggi L; Lattanzio VM; Albertini E Food Microbiol; 2012 Aug; 31(1):17-24. PubMed ID: 22475938 [TBL] [Abstract][Full Text] [Related]
23. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Waśkiewicz A; Stępień L; Wilman K; Kachlicki P Toxins (Basel); 2013 Mar; 5(3):488-503. PubMed ID: 23470545 [TBL] [Abstract][Full Text] [Related]
24. Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains. Sánchez-Rangel D; SanJuan-Badillo A; Plasencia J J Agric Food Chem; 2005 Nov; 53(22):8565-71. PubMed ID: 16248554 [TBL] [Abstract][Full Text] [Related]
25. A loop-mediated isothermal amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp. Wigmann ÉF; Meyer K; Cendoya E; Maul R; Vogel RF; Niessen L Int J Food Microbiol; 2020 Jul; 325():108627. PubMed ID: 32334331 [TBL] [Abstract][Full Text] [Related]
26. Effect of Tebuconazole Enantiomers and Environmental Factors on Fumonisin Accumulation and FUM Gene Expression in Fusarium verticillioides. Li N; Zhao J; Zhang R; Deng L; Li J; Gao Y; Liu C J Agric Food Chem; 2018 Dec; 66(50):13107-13115. PubMed ID: 30458614 [TBL] [Abstract][Full Text] [Related]
28. Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides. Lanubile A; Logrieco A; Battilani P; Proctor RH; Marocco A Plant Sci; 2013 Sep; 210():183-92. PubMed ID: 23849125 [TBL] [Abstract][Full Text] [Related]
29. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Choi YE; Xu JR Mol Plant Microbe Interact; 2010 Apr; 23(4):522-33. PubMed ID: 20192838 [TBL] [Abstract][Full Text] [Related]
30. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions. Fanelli F; Iversen A; Logrieco AF; Mulè G Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(2):365-71. PubMed ID: 23167929 [TBL] [Abstract][Full Text] [Related]
31. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. Atanasova-Penichon V; Bernillon S; Marchegay G; Lornac A; Pinson-Gadais L; Ponts N; Zehraoui E; Barreau C; Richard-Forget F Mol Plant Microbe Interact; 2014 Oct; 27(10):1148-58. PubMed ID: 25014591 [TBL] [Abstract][Full Text] [Related]
32. Identification of a 12-gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics. Brown DW; Lee SH; Kim LH; Ryu JG; Lee S; Seo Y; Kim YH; Busman M; Yun SH; Proctor RH; Lee T Mol Plant Microbe Interact; 2015 Mar; 28(3):319-32. PubMed ID: 25372119 [TBL] [Abstract][Full Text] [Related]
33. Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fanelli F; Schmidt-Heydt M; Haidukowski M; Susca A; Geisen R; Logrieco A; Mulè G Fungal Biol; 2012 Feb; 116(2):241-8. PubMed ID: 22289770 [TBL] [Abstract][Full Text] [Related]
34. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. Maschietto V; Marocco A; Malachova A; Lanubile A J Plant Physiol; 2015 Sep; 188():9-18. PubMed ID: 26398628 [TBL] [Abstract][Full Text] [Related]
35. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides. Uhlig S; Busman M; Shane DS; Rønning H; Rise F; Proctor R J Agric Food Chem; 2012 Oct; 60(41):10293-301. PubMed ID: 22991966 [TBL] [Abstract][Full Text] [Related]
36. Self-Protection against the Sphingolipid Biosynthesis Inhibitor Fumonisin B Janevska S; Ferling I; Jojić K; Rautschek J; Hoefgen S; Proctor RH; Hillmann F; Valiante V mBio; 2020 Jun; 11(3):. PubMed ID: 32546615 [TBL] [Abstract][Full Text] [Related]
37. In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2. Ferrigo D; Raiola A; Bogialli S; Bortolini C; Tapparo A; Causin R J Agric Food Chem; 2015 May; 63(19):4879-85. PubMed ID: 25910187 [TBL] [Abstract][Full Text] [Related]
38. Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China. Wang J; Wang X; Zhou Y; Du L; Wang Q J Sci Food Agric; 2010 Apr; 90(5):836-42. PubMed ID: 20355120 [TBL] [Abstract][Full Text] [Related]