These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2321970)

  • 1. Iron mobilization from asbestos by chelators and ascorbic acid.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1990 Apr; 278(1):61-4. PubMed ID: 2321970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization of iron from crocidolite asbestos by certain chelators results in enhanced crocidolite-dependent oxygen consumption.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1991 May; 287(1):91-6. PubMed ID: 1654807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA.
    Lund LG; Aust AE
    Carcinogenesis; 1992 Apr; 13(4):637-42. PubMed ID: 1315628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of long-term removal of iron from asbestos by desferrioxamine B on subsequent mobilization by other chelators and induction of DNA single-strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1994 Jan; 308(1):64-9. PubMed ID: 8311475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells.
    Smith KR; Aust AE
    Chem Res Toxicol; 1997 Jul; 10(7):828-34. PubMed ID: 9250418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using in vitro iron deposition on asbestos to model asbestos bodies formed in human lung.
    Shen Z; Bosbach D; Hochella MF; Bish DL; Williams MG; Dodson RF; Aust AE
    Chem Res Toxicol; 2000 Sep; 13(9):913-21. PubMed ID: 10995265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asbestos in the lungs of persons exposed in the USA.
    Langer AM; Nolan RP
    Monaldi Arch Chest Dis; 1998 Apr; 53(2):168-80. PubMed ID: 9689804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical characterization and reactivity of iron chelator-treated amphibole asbestos.
    Gold J; Amandusson H; Krozer A; Kasemo B; Ericsson T; Zanetti G; Fubini B
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1021-30. PubMed ID: 9400694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA.
    Gilmour PS; Beswick PH; Brown DM; Donaldson K
    Carcinogenesis; 1995 Dec; 16(12):2973-9. PubMed ID: 8603472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks.
    Hardy JA; Aust AE
    Carcinogenesis; 1995 Feb; 16(2):319-25. PubMed ID: 7859364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and modifying factors of asbestos-induced oxidative DNA damage.
    Jiang L; Nagai H; Ohara H; Hara S; Tachibana M; Hirano S; Shinohara Y; Kohyama N; Akatsuka S; Toyokuni S
    Cancer Sci; 2008 Nov; 99(11):2142-51. PubMed ID: 18775024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron mobilization from crocidolite asbestos by human lung carcinoma cells.
    Chao CC; Lund LG; Zinn KR; Aust AE
    Arch Biochem Biophys; 1994 Nov; 314(2):384-91. PubMed ID: 7979379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalate deposition on asbestos bodies.
    Ghio AJ; Roggli VL; Richards JH; Crissman KM; Stonehuerner JD; Piantadosi CA
    Hum Pathol; 2003 Aug; 34(8):737-42. PubMed ID: 14506632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of iron in inactivation of epidermal growth factor receptor after asbestos treatment of human lung and pleural target cells.
    Baldys A; Aust AE
    Am J Respir Cell Mol Biol; 2005 May; 32(5):436-42. PubMed ID: 15626777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbic acid modifies the surface of asbestos: possible implications in the molecular mechanisms of toxicity.
    Martra G; Tomatis M; Fenoglio I; Coluccia S; Fubini B
    Chem Res Toxicol; 2003 Mar; 16(3):328-35. PubMed ID: 12641433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.
    Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E
    Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.
    Turci F; Tomatis M; Gazzano E; Riganti C; Martra G; Bosia A; Ghigo D; Fubini B
    J Toxicol Environ Health A; 2005 Jan; 68(1):21-39. PubMed ID: 15739802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of ferritin synthesis in human lung epithelial cells treated with crocidolite asbestos.
    Fang R; Aust AE
    Arch Biochem Biophys; 1997 Apr; 340(2):369-75. PubMed ID: 9143343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
    Choi JK; Vigliaturo R; Gieré R; Pérez-Rodríguez I
    Appl Environ Microbiol; 2023 Jun; 89(6):e0204822. PubMed ID: 37184266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.