These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Increased Reliance on Carbohydrates for Aerobic Exercise in Highland Andean Leaf-Eared Mice, but Not in Highland Lima Leaf-Eared Mice. Schippers MP; Ramirez O; Arana M; McClelland GB Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822408 [TBL] [Abstract][Full Text] [Related]
3. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. Lau DS; Connaty AD; Mahalingam S; Wall N; Cheviron ZA; Storz JF; Scott GR; McClelland GB Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R400-R411. PubMed ID: 28077391 [TBL] [Abstract][Full Text] [Related]
4. Taxonomic revision of the Andean leaf-eared mouse, Phyllotis andium Thomas 1912 (Rodentia: Cricetidae), with the description of a new species. Rengifo EM; Pacheco V Zootaxa; 2015 Sep; 4018(3):349-80. PubMed ID: 26624045 [TBL] [Abstract][Full Text] [Related]
5. Regulation of muscle pyruvate dehydrogenase activity and fuel use during exercise in high-altitude deer mice. Coulson SZ; Lyons SA; Robertson CE; Fabello B; Dessureault LM; McClelland GB J Exp Biol; 2024 Aug; 227(16):. PubMed ID: 39054898 [TBL] [Abstract][Full Text] [Related]
6. Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives. McClelland GB; Scott GR Annu Rev Physiol; 2019 Feb; 81():561-583. PubMed ID: 30256727 [TBL] [Abstract][Full Text] [Related]
7. Fuel Use in Mammals: Conserved Patterns and Evolved Strategies for Aerobic Locomotion and Thermogenesis. McClelland GB; Lyons SA; Robertson CE Integr Comp Biol; 2017 Aug; 57(2):231-239. PubMed ID: 28859408 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic and structural analysis of the HbA (alphaA/betaA) and HbD (alphaD/betaA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). McCracken KG; Barger CP; Sorenson MD Mol Phylogenet Evol; 2010 Aug; 56(2):649-58. PubMed ID: 20434566 [TBL] [Abstract][Full Text] [Related]
9. Signatures of high-altitude adaptation in the major hemoglobin of five species of andean dabbling ducks. McCracken KG; Barger CP; Bulgarella M; Johnson KP; Kuhner MK; Moore AV; Peters JL; Trucco J; Valqui TH; Winker K; Wilson RE Am Nat; 2009 Nov; 174(5):631-50. PubMed ID: 19788356 [TBL] [Abstract][Full Text] [Related]
10. Thermal acclimation and seasonal variations of erythrocyte size in the Andean mouse Phyllotis xanthopygus rupestris. Ruiz G; Rosenmann M; Cortes A Comp Biochem Physiol A Mol Integr Physiol; 2004 Dec; 139(4):405-9. PubMed ID: 15596384 [TBL] [Abstract][Full Text] [Related]
11. Discovery of the world's highest-dwelling mammal. Storz JF; Quiroga-Carmona M; Opazo JC; Bowen T; Farson M; Steppan SJ; D'Elía G Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18169-18171. PubMed ID: 32675238 [TBL] [Abstract][Full Text] [Related]
12. Cardiovascular adaptation to exercise at high altitude. Grover RF; Weil JV; Reeves JT Exerc Sport Sci Rev; 1986; 14():269-302. PubMed ID: 3525187 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and characterization of hemoglobin alpha and beta chains from plateau pika (Ochotona curzoniae) living at high altitude. Yingzhong Y; Yue C; Guoen J; Zhenzhong B; Lan M; Haixia Y; Rili G Gene; 2007 Nov; 403(1-2):118-24. PubMed ID: 17900824 [TBL] [Abstract][Full Text] [Related]
14. Exhaled nitric oxide in ethnically diverse high-altitude native populations: A comparative study. Ghosh S; Kiyamu M; Contreras P; León-Velarde F; Bigham A; Brutsaert TD Am J Phys Anthropol; 2019 Nov; 170(3):451-458. PubMed ID: 31396964 [TBL] [Abstract][Full Text] [Related]
15. Aerobic capacity and running performance across a 1.6 km altitude difference in two sciurid rodents. Chappell MA; Dlugosz EM J Exp Biol; 2009 Mar; 212(Pt 5):610-9. PubMed ID: 19218511 [TBL] [Abstract][Full Text] [Related]
16. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory. Weinstein KJ Am J Phys Anthropol; 2007 Sep; 134(1):36-49. PubMed ID: 17503449 [TBL] [Abstract][Full Text] [Related]
17. Elevated performance: the unique physiology of birds that fly at high altitudes. Scott GR J Exp Biol; 2011 Aug; 214(Pt 15):2455-62. PubMed ID: 21753038 [TBL] [Abstract][Full Text] [Related]
18. Surname-inferred Andean ancestry is associated with child stature and limb lengths at high altitude in Peru, but not at sea level. Pomeroy E; Wells JC; Stanojevic S; Miranda JJ; Moore LG; Cole TJ; Stock JT Am J Hum Biol; 2015; 27(6):798-806. PubMed ID: 25960137 [TBL] [Abstract][Full Text] [Related]
19. Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose? Lee SY; Scott GR; Milsom WK Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):324-31. PubMed ID: 18635402 [TBL] [Abstract][Full Text] [Related]
20. Deer mouse aerobic performance across altitudes: effects of developmental history and temperature acclimation. Chappell MA; Hammond KA; Cardullo RA; Russell GA; Rezende EL; Miller C Physiol Biochem Zool; 2007; 80(6):652-62. PubMed ID: 17910001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]