These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 23219803)

  • 1. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations.
    Rahman LN; McKay F; Giuliani M; Quirk A; Moffatt BA; Harauz G; Dutcher JR
    Biochim Biophys Acta; 2013 Mar; 1828(3):967-80. PubMed ID: 23219803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant dehydrins--tissue location, structure and function.
    Rorat T
    Cell Mol Biol Lett; 2006; 11(4):536-56. PubMed ID: 16983453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments.
    Mouillon JM; Gustafsson P; Harryson P
    Plant Physiol; 2006 Jun; 141(2):638-50. PubMed ID: 16565295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea.
    Ismail AM; Hall AE; Close TJ
    Plant Physiol; 1999 May; 120(1):237-44. PubMed ID: 10318701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins.
    Hsiao AS
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response.
    Szlachtowska Z; Rurek M
    Front Plant Sci; 2023; 14():1213188. PubMed ID: 37484455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Functional Role of the Cysteine Residue in Dehydrin from the Arctic Mouse-Ear Chickweed
    Kim IS; Choi W; Park AK; Kim H; Son J; Lee JH; Shin SC; Kim TD; Kim HW
    Molecules; 2022 May; 27(9):. PubMed ID: 35566285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers.
    Ginsawaeng O; Heise C; Sangwan R; Karcher D; Hernández-Sánchez IE; Sampathkumar A; Zuther E
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Get closer and make hotspots: liquid-liquid phase separation in plants.
    Kim J; Lee H; Lee HG; Seo PJ
    EMBO Rep; 2021 May; 22(5):e51656. PubMed ID: 33913240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plant dehydrin Lti30 stabilizes lipid lamellar structures in varying hydration conditions.
    Andersson JM; Pham QD; Mateos H; Eriksson S; Harryson P; Sparr E
    J Lipid Res; 2020 Jul; 61(7):1014-1024. PubMed ID: 32404333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants.
    Guo X; Zhang L; Wang X; Zhang M; Xi Y; Wang A; Zhu J
    PLoS One; 2019; 14(11):e0225090. PubMed ID: 31738789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants.
    Halder T; Upadhyaya G; Basak C; Das A; Chakraborty C; Ray S
    Front Plant Sci; 2018; 9():136. PubMed ID: 29491874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evidence for homo- and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18.
    Hernández-Sánchez IE; Maruri-López I; Graether SP; Jiménez-Bremont JF
    Sci Rep; 2017 Dec; 7(1):17036. PubMed ID: 29213048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural disorder in plant proteins: where plasticity meets sessility.
    Covarrubias AA; Cuevas-Velazquez CL; Romero-Pérez PS; Rendón-Luna DF; Chater CCC
    Cell Mol Life Sci; 2017 Sep; 74(17):3119-3147. PubMed ID: 28643166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013).
    Uversky VN
    Intrinsically Disord Proteins; 2013; 1(1):e25496. PubMed ID: 28516015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an Intrinsically Disordered Stress Protein Alone and Bound to a Membrane Surface.
    Atkinson J; Clarke MW; Warnica JM; Boddington KF; Graether SP
    Biophys J; 2016 Aug; 111(3):480-491. PubMed ID: 27508433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic diversity at the Dhn3 locus in Turkish Hordeum spontaneum populations with comparative structural analyses.
    Uçarlı C; McGuffin LJ; Çaputlu S; Aravena A; Gürel F
    Sci Rep; 2016 Feb; 6():20966. PubMed ID: 26869072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.
    Hernández-Sánchez IE; Maruri-López I; Ferrando A; Carbonell J; Graether SP; Jiménez-Bremont JF
    Front Plant Sci; 2015; 6():702. PubMed ID: 26442018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.
    Zolotarov Y; Strömvik M
    PLoS One; 2015; 10(6):e0129016. PubMed ID: 26114291
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.