These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23219804)
21. Modulation of spectrin-actin assembly by erythrocyte adducin. Gardner K; Bennett V Nature; 1987 Jul 23-29; 328(6128):359-62. PubMed ID: 3600811 [TBL] [Abstract][Full Text] [Related]
22. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins. Klonk S; Deuticke B Biochim Biophys Acta; 1992 Apr; 1106(1):143-50. PubMed ID: 1581327 [TBL] [Abstract][Full Text] [Related]
23. [Spectrin--variety of functions hidden in the structure]. Wolny M; Wróblewska AM; Machnicka B; Sikorski AF Postepy Biochem; 2012; 58(3):245-54. PubMed ID: 23373410 [TBL] [Abstract][Full Text] [Related]
24. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE; Smith DA; Hooper NM Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480 [TBL] [Abstract][Full Text] [Related]
25. Spectrin, human erythrocyte shapes, and mechanochemical properties. Stokke BT; Mikkelsen A; Elgsaeter A Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175 [TBL] [Abstract][Full Text] [Related]
26. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology. Gao X; Hannoush RN Cell Chem Biol; 2018 Mar; 25(3):236-246. PubMed ID: 29290622 [TBL] [Abstract][Full Text] [Related]
27. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. Łach A; Grzybek M; Heger E; Korycka J; Wolny M; Kubiak J; Kolondra A; Bogusławska DM; Augoff K; Majkowski M; Podkalicka J; Kaczor J; Stefanko A; Kuliczkowski K; Sikorski AF J Biol Chem; 2012 Jun; 287(23):18974-84. PubMed ID: 22496366 [TBL] [Abstract][Full Text] [Related]
28. A Trifunctional Linker for Palmitoylation and Peptide and Protein Localization in Biological Membranes. Syga Ł; de Vries RH; van Oosterhout H; Bartelds R; Boersma AJ; Roelfes G; Poolman B Chembiochem; 2020 May; 21(9):1320-1328. PubMed ID: 31814256 [TBL] [Abstract][Full Text] [Related]
29. Atomic force microscopy of the erythrocyte membrane skeleton. Swihart AH; Mikrut JM; Ketterson JB; Macdonald RC J Microsc; 2001 Dec; 204(Pt 3):212-25. PubMed ID: 11903798 [TBL] [Abstract][Full Text] [Related]
30. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Morris G; Walder K; Puri BK; Berk M; Maes M Mol Neurobiol; 2016 Sep; 53(7):4638-58. PubMed ID: 26310971 [TBL] [Abstract][Full Text] [Related]
31. Direct interaction between the Lu/B-CAM adhesion glycoproteins and erythroid spectrin. Kroviarski Y; El Nemer W; Gane P; Rahuel C; Gauthier E; Lecomte MC; Cartron JP; Colin Y; Le Van Kim C Br J Haematol; 2004 Jul; 126(2):255-64. PubMed ID: 15238148 [TBL] [Abstract][Full Text] [Related]
32. Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Resh MD Methods; 2006 Oct; 40(2):191-7. PubMed ID: 17012032 [TBL] [Abstract][Full Text] [Related]
33. The human erythrocyte membrane skeleton may be an ionic gel. III. Micropipette aspiration of unswollen erythrocytes. Stokke BT; Mikkelsen A; Elgsaeter A J Theor Biol; 1986 Nov; 123(2):205-11. PubMed ID: 3626588 [TBL] [Abstract][Full Text] [Related]
34. Spectrin and Other Membrane-Skeletal Components in Human Red Blood Cells of Different Age. Ciana A; Achilli C; Minetti G Cell Physiol Biochem; 2017; 42(3):1139-1152. PubMed ID: 28668958 [TBL] [Abstract][Full Text] [Related]
35. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts. Liu SC; Derick LH; Duquette MA; Palek J Eur J Cell Biol; 1989 Aug; 49(2):358-65. PubMed ID: 2776779 [TBL] [Abstract][Full Text] [Related]
36. Ubiquitination of spectrin regulates the erythrocyte spectrin-protein-4.1-actin ternary complex dissociation: implications for the sickle cell membrane skeleton. Ghatpande SS; Goodman SR Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):67-74. PubMed ID: 15040429 [TBL] [Abstract][Full Text] [Related]
37. Dynamic simulations of membranes with cytoskeletal interactions. Lin LC; Brown FL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011910. PubMed ID: 16090004 [TBL] [Abstract][Full Text] [Related]
38. Modeling of the axon plasma membrane structure and its effects on protein diffusion. Zhang Y; Tzingounis AV; Lykotrafitis G PLoS Comput Biol; 2019 May; 15(5):e1007003. PubMed ID: 31048841 [TBL] [Abstract][Full Text] [Related]
39. Some morphological consequences of uncoupling the lipid bilayer from the plasma membrane skeleton in intact erythrocytes. Allan D; Raval P Biomed Biochim Acta; 1983; 42(11-12):S11-6. PubMed ID: 6675679 [TBL] [Abstract][Full Text] [Related]
40. A tightly membrane-associated subpopulation of spectrin is 3H-palmitoylated. Mariani M; Maretzki D; Lutz HU J Biol Chem; 1993 Jun; 268(17):12996-3001. PubMed ID: 8509431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]