BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23219838)

  • 1. Larval ethanol exposure alters free-running circadian rhythm and per Locus transcription in adult D. melanogaster period mutants.
    Ahmad ST; Steinmetz SB; Bussey HM; Possidente B; Seggio JA
    Behav Brain Res; 2013 Mar; 241():50-5. PubMed ID: 23219838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster.
    Seggio JA; Possidente B; Ahmad ST
    Chronobiol Int; 2012 Feb; 29(1):75-81. PubMed ID: 22217104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila.
    Liao J; Seggio JA; Ahmad ST
    Behav Brain Res; 2016 Apr; 302():213-9. PubMed ID: 26802726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock.
    Nitabach MN; Sheeba V; Vera DA; Blau J; Holmes TC
    J Neurobiol; 2005 Jan; 62(1):1-13. PubMed ID: 15389695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p38 MAP kinase regulates circadian rhythms in Drosophila.
    Vrailas-Mortimer AD; Ryan SM; Avey MJ; Mortimer NT; Dowse H; Sanyal S
    J Biol Rhythms; 2014 Dec; 29(6):411-26. PubMed ID: 25403440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila.
    Kim M; Lee H; Hur JH; Choe J; Lim C
    Sci Rep; 2016 Aug; 6():32113. PubMed ID: 27577611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila.
    De Nobrega AK; Lyons LC
    J Biol Rhythms; 2016 Apr; 31(2):142-60. PubMed ID: 26833081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ethanol intake and ethanol withdrawal on free-running circadian activity rhythms in rats.
    Rosenwasser AM; Fecteau ME; Logan RW
    Physiol Behav; 2005 Mar; 84(4):537-42. PubMed ID: 15811388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian and Genetic Modulation of Visually-Guided Navigation in Drosophila Larvae.
    Asirim EZ; Humberg TH; Maier GL; Sprecher SG
    Sci Rep; 2020 Feb; 10(1):2752. PubMed ID: 32066794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circadian clock of Drosophila: effects of deuterium oxide and mutations at the period locus.
    White L; Ringo J; Dowse H
    Chronobiol Int; 1992 Aug; 9(4):250-9. PubMed ID: 1330336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.
    Rosenwasser AM; McCulley WD; Fecteau M
    Alcohol; 2014 Nov; 48(7):647-55. PubMed ID: 25281289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult circadian behavior in Drosophila requires developmental expression of cycle, but not period.
    Goda T; Mirowska K; Currie J; Kim MH; Rao NV; Bonilla G; Wijnen H
    PLoS Genet; 2011 Jul; 7(7):e1002167. PubMed ID: 21750685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcriptional regulation of PER protein in Drosophila.
    Dilão R; Mota B
    J Theor Biol; 2019 May; 469():12-17. PubMed ID: 30826337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of central clock function in
    Delventhal R; O'Connor RM; Pantalia MM; Ulgherait M; Kim HX; Basturk MK; Canman JC; Shirasu-Hiza M
    Elife; 2019 Oct; 8():. PubMed ID: 31613218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation.
    Schäbler S; Amatobi KM; Horn M; Rieger D; Helfrich-Förster C; Mueller MJ; Wegener C; Fekete A
    Cell Mol Life Sci; 2020 Dec; 77(23):4939-4956. PubMed ID: 31960114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of withdrawal from chronic intermittent ethanol vapor on the level and circadian periodicity of running-wheel activity in C57BL/6J and C3H/HeJ mice.
    Logan RW; McCulley WD; Seggio JA; Rosenwasser AM
    Alcohol Clin Exp Res; 2012 Mar; 36(3):467-76. PubMed ID: 22013893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Amplitude Circadian Rhythms in
    Kweon SH; Lee J; Lim C; Choe J
    Genetics; 2018 Jul; 209(3):815-828. PubMed ID: 29724861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oviposition in the period genotypes of Drosophila melanogaster.
    McCabe C; Birley A
    Chronobiol Int; 1998 Mar; 15(2):119-33. PubMed ID: 9562917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic jet lag impairs startle-induced locomotion in Drosophila.
    Vaccaro A; Birman S; Klarsfeld A
    Exp Gerontol; 2016 Dec; 85():24-27. PubMed ID: 27639775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.