BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 23220004)

  • 1. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.
    Porté S; Xavier Ruiz F; Giménez J; Molist I; Alvarez S; Domínguez M; Alvarez R; de Lera AR; Parés X; Farrés J
    Chem Biol Interact; 2013 Feb; 202(1-3):186-94. PubMed ID: 23220004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids.
    Gallego O; Belyaeva OV; Porté S; Ruiz FX; Stetsenko AV; Shabrova EV; Kostereva NV; Farrés J; Parés X; Kedishvili NY
    Biochem J; 2006 Oct; 399(1):101-9. PubMed ID: 16787387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and metabolic retinoid pathways in the human ocular surface.
    Nezzar H; Chiambaretta F; Marceau G; Blanchon L; Faye B; Dechelotte P; Rigal D; Sapin V
    Mol Vis; 2007 Sep; 13():1641-50. PubMed ID: 17893666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldo-keto reductases from the AKR1B subfamily: retinoid specificity and control of cellular retinoic acid levels.
    Ruiz FX; Gallego O; Ardèvol A; Moro A; Domínguez M; Alvarez S; Alvarez R; de Lera AR; Rovira C; Fita I; Parés X; Farrés J
    Chem Biol Interact; 2009 Mar; 178(1-3):171-7. PubMed ID: 19014918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes and binding proteins affecting retinoic acid concentrations.
    Napoli JL; Boerman MH; Chai X; Zhai Y; Fiorella PD
    J Steroid Biochem Mol Biol; 1995 Jun; 53(1-6):497-502. PubMed ID: 7626500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid.
    Duester G; Mic FA; Molotkov A
    Chem Biol Interact; 2003 Feb; 143-144():201-10. PubMed ID: 12604205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium- and short-chain dehydrogenase/reductase gene and protein families : Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism.
    Parés X; Farrés J; Kedishvili N; Duester G
    Cell Mol Life Sci; 2008 Dec; 65(24):3936-49. PubMed ID: 19011747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The participation of dehydrogenases in retinol metabolism].
    Orywal K; Jelski W; Szmitkowski M
    Pol Merkur Lekarski; 2008 Sep; 25(147):276-9. PubMed ID: 19112849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of Intracellular Retinoid Binding-Proteins.
    Napoli JL
    Subcell Biochem; 2016; 81():21-76. PubMed ID: 27830500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic Acid Synthesis and Degradation.
    Kedishvili NY
    Subcell Biochem; 2016; 81():127-161. PubMed ID: 27830503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis.
    Duester G
    Biochemistry; 1996 Sep; 35(38):12221-7. PubMed ID: 8823154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids.
    Giménez-Dejoz J; Weber S; Fernández-Pardo Á; Möller G; Adamski J; Porté S; Parés X; Farrés J
    Chem Biol Interact; 2019 Jul; 307():186-194. PubMed ID: 31028727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids.
    Belyaeva OV; Korkina OV; Stetsenko AV; Kim T; Nelson PS; Kedishvili NY
    Biochemistry; 2005 May; 44(18):7035-47. PubMed ID: 15865448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of alcohol and aldehyde dehydrogenase activities on hepatic retinoid metabolism and its possible participation in the progression of rat liver regeneration.
    López-Valencia V; Rangel P; Rodríguez S; Hernández-Muñoz R
    Biochem Pharmacol; 2007 Feb; 73(4):586-96. PubMed ID: 17126819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding affinities of CRBPI and CRBPII for 9-cis-retinoids.
    Kane MA; Bright FV; Napoli JL
    Biochim Biophys Acta; 2011 May; 1810(5):514-8. PubMed ID: 21382444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoid pathway and cancer therapeutics.
    Bushue N; Wan YJ
    Adv Drug Deliv Rev; 2010 Oct; 62(13):1285-98. PubMed ID: 20654663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde.
    Ruiz FX; Moro A; Gallego O; Ardèvol A; Rovira C; Petrash JM; Parés X; Farrés J
    Chem Biol Interact; 2011 May; 191(1-3):199-205. PubMed ID: 21329680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intracellular vitamin A-binding proteins: an overview of their functions.
    Wolf G
    Nutr Rev; 1991 Jan; 49(1):1-12. PubMed ID: 2052162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis.
    Napoli JL
    J Nutr; 1993 Feb; 123(2 Suppl):362-6. PubMed ID: 8381481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases.
    Napoli JL
    Pharmacol Ther; 2017 May; 173():19-33. PubMed ID: 28132904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.