These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23220026)

  • 21. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Bisyakoev M; Eliyahu I; Feinberg G; Hazenshprung N; Kijel D; Nagler A; Silverman I
    Appl Radiat Isot; 2011 Dec; 69(12):1654-6. PubMed ID: 21459008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter.
    Murata I; Miyamaru H; Kato I; Mori Y
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S288-91. PubMed ID: 19376716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BINP accelerator based epithermal neutron source.
    Aleynik V; Burdakov A; Davydenko V; Ivanov A; Kanygin V; Kuznetsov A; Makarov A; Sorokin I; Taskaev S
    Appl Radiat Isot; 2011 Dec; 69(12):1635-8. PubMed ID: 21439836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RBE in fast neutron therapy and in boron neutron capture therapy. A useful concept or a misuse?
    Wambersie A; Menzel HG
    Strahlenther Onkol; 1993 Jan; 169(1):57-64. PubMed ID: 8434341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Superimposition alpha-autoradiography for basic study of neutron capture therapy (author's transl)].
    Amano K
    No To Shinkei; 1981 Jul; 33(7):693-701. PubMed ID: 7272098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS).
    Tanaka H; Sakurai Y; Suzuki M; Masunaga S; Mitsumoto T; Fujita K; Kashino G; Kinashi Y; Liu Y; Takada M; Ono K; Maruhashi A
    Appl Radiat Isot; 2011 Dec; 69(12):1642-5. PubMed ID: 21463945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.
    Pytel K; Józefowicz K; Pytel B; Koziel A
    Radiat Prot Dosimetry; 2004; 110(1-4):823-6. PubMed ID: 15353753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of ideal neutron beams for neutron capture therapy.
    Storr GJ
    Radiat Res; 1992 Sep; 131(3):235-42. PubMed ID: 1438683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration of the borated ion chamber at NIST reactor thermal column.
    Wang Z; Hertel NE; Lennox A
    Radiat Prot Dosimetry; 2007; 126(1-4):626-30. PubMed ID: 17525059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The radiation biology of boron neutron capture therapy.
    Coderre JA; Morris GM
    Radiat Res; 1999 Jan; 151(1):1-18. PubMed ID: 9973079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A shielding design for an accelerator-based neutron source for boron neutron capture therapy.
    Hawk AE; Blue TE; Woollard JE
    Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium neutron producing target for BINP accelerator-based neutron source.
    Bayanov B; Belov V; Kindyuk V; Oparin E; Taskaev S
    Appl Radiat Isot; 2004 Nov; 61(5):817-21. PubMed ID: 15308150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boronated monoclonal antibody 17-1A for potential neutron capture therapy of colorectal cancer.
    Barth RF; Alam F; Soloway AH; Adams DM; Steplewski Z
    Hybridoma; 1986 Jul; 5 Suppl 1():S43-50. PubMed ID: 3744385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy.
    Yanch JC; Zhou XL; Brownell GL
    Radiat Res; 1991 Apr; 126(1):1-20. PubMed ID: 2020734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility study on medical isotope production using a compact neutron generator.
    Leung KN; Leung JK; Melville G
    Appl Radiat Isot; 2018 Jul; 137():23-27. PubMed ID: 29524732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of activation methods on the Dubna experimental transmutation set-ups.
    Stoulos S; Fragopoulou M; Adloff JC; Debeauvais M; Brandt R; Westmeier W; Krivopustov M; Sosnin A; Papastefanou C; Zamani M; Manolopoulou M
    Appl Radiat Isot; 2003 Feb; 58(2):169-75. PubMed ID: 12573315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.
    Chiba S; Wakabayashi T; Tachi Y; Takaki N; Terashima A; Okumura S; Yoshida T
    Sci Rep; 2017 Oct; 7(1):13961. PubMed ID: 29066843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of poorly crystalline silicotitanate in production of
    Fitzsimmons J; Abraham A; Catalano D; Younes A; Cutler CS; Medvedev D
    Sci Rep; 2019 Aug; 9(1):11808. PubMed ID: 31413268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.