BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23220115)

  • 21. Protective role of Parkin in skeletal muscle contractile and mitochondrial function.
    Gouspillou G; Godin R; Piquereau J; Picard M; Mofarrahi M; Mathew J; Purves-Smith FM; Sgarioto N; Hepple RT; Burelle Y; Hussain SNA
    J Physiol; 2018 Jul; 596(13):2565-2579. PubMed ID: 29682760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse.
    Iqbal S; Ostojic O; Singh K; Joseph AM; Hood DA
    Muscle Nerve; 2013 Dec; 48(6):963-70. PubMed ID: 23494933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle.
    Siu PM; Alway SE
    J Physiol; 2005 May; 565(Pt 1):309-23. PubMed ID: 15774533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PGC-1α modulates denervation-induced mitophagy in skeletal muscle.
    Vainshtein A; Desjardins EM; Armani A; Sandri M; Hood DA
    Skelet Muscle; 2015; 5():9. PubMed ID: 25834726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging.
    Zhou J; Chong SY; Lim A; Singh BK; Sinha RA; Salmon AB; Yen PM
    Aging (Albany NY); 2017 Feb; 9(2):583-599. PubMed ID: 28238968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagy machinery in the context of mammalian mitophagy.
    Yoshii SR; Mizushima N
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2797-801. PubMed ID: 25634658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in
    Cornelissen T; Vilain S; Vints K; Gounko N; Verstreken P; Vandenberghe W
    Elife; 2018 May; 7():. PubMed ID: 29809156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autophagic response to exercise training in skeletal muscle with age.
    Kim YA; Kim YS; Oh SL; Kim HJ; Song W
    J Physiol Biochem; 2013 Dec; 69(4):697-705. PubMed ID: 23471597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.
    O'Leary MF; Hood DA
    J Appl Physiol (1985); 2008 Jul; 105(1):114-20. PubMed ID: 18450984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease.
    Martín-Maestro P; Gargini R; Perry G; Avila J; García-Escudero V
    Hum Mol Genet; 2016 Feb; 25(4):792-806. PubMed ID: 26721933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD).
    Leermakers PA; Schols AMWJ; Kneppers AEM; Kelders MCJM; de Theije CC; Lainscak M; Gosker HR
    Sci Rep; 2018 Oct; 8(1):15007. PubMed ID: 30302028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway.
    Sebastián D; Sorianello E; Segalés J; Irazoki A; Ruiz-Bonilla V; Sala D; Planet E; Berenguer-Llergo A; Muñoz JP; Sánchez-Feutrie M; Plana N; Hernández-Álvarez MI; Serrano AL; Palacín M; Zorzano A
    EMBO J; 2016 Aug; 35(15):1677-93. PubMed ID: 27334614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of denervation-induced muscle disuse on mitochondrial protein import.
    Singh K; Hood DA
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C138-45. PubMed ID: 20943961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.
    Nezich CL; Wang C; Fogel AI; Youle RJ
    J Cell Biol; 2015 Aug; 210(3):435-50. PubMed ID: 26240184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength.
    Xu Z; Fu T; Guo Q; Zhou D; Sun W; Zhou Z; Chen X; Zhang J; Liu L; Xiao L; Yin Y; Jia Y; Pang E; Chen Y; Pan X; Fang L; Zhu MS; Fei W; Lu B; Gan Z
    Nat Commun; 2022 Feb; 13(1):894. PubMed ID: 35173176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Denervation-induced oxidative stress and autophagy signaling in muscle.
    O'Leary MF; Hood DA
    Autophagy; 2009 Feb; 5(2):230-1. PubMed ID: 19098460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autophagy as a Potential Target for Sarcopenia.
    Fan J; Kou X; Jia S; Yang X; Yang Y; Chen N
    J Cell Physiol; 2016 Jul; 231(7):1450-9. PubMed ID: 26580995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oligonol Alleviates Sarcopenia by Regulation of Signaling Pathways Involved in Protein Turnover and Mitochondrial Quality.
    Chang YC; Chen YT; Liu HW; Chan YC; Liu MY; Hu SH; Tseng WT; Wu HL; Wang MF; Chang SJ
    Mol Nutr Food Res; 2019 May; 63(10):e1801102. PubMed ID: 30793867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patients with Type 2 diabetes.
    Kruse R; Pedersen AJ; Kristensen JM; Petersson SJ; Wojtaszewski JF; Højlund K
    Clin Sci (Lond); 2017 Jan; 131(1):37-47. PubMed ID: 27837193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.