These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23220120)

  • 1. Comodulation masking release induced by controlled electrical stimulation of auditory nerve fibers.
    Zirn S; Hempel JM; Schuster M; Hemmert W
    Hear Res; 2013 Feb; 296():60-6. PubMed ID: 23220120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of onset enhancement for increased speech intelligibility in auditory prostheses.
    Koning R; Wouters J
    J Acoust Soc Am; 2012 Oct; 132(4):2569-81. PubMed ID: 23039450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression and comodulation masking release in normal-hearing and hearing-impaired listeners.
    Ernst SM; Rennies J; Kollmeier B; Verhey JL
    J Acoust Soc Am; 2010 Jul; 128(1):300-9. PubMed ID: 20649225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phoneme recognition in modulated maskers by normal-hearing and aided hearing-impaired listeners.
    Phatak SA; Grant KW
    J Acoust Soc Am; 2012 Sep; 132(3):1646-54. PubMed ID: 22978893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing.
    Laback B; Zimmermann I; Majdak P; Baumgartner WD; Pok SM
    J Acoust Soc Am; 2011 Sep; 130(3):1515-29. PubMed ID: 21895091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of interaural differences in envelope shape on the perceived location of sounds (L).
    Francart T; Lenssen A; Wouters J
    J Acoust Soc Am; 2012 Aug; 132(2):611-4. PubMed ID: 22894182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility.
    Qazi OU; van Dijk B; Moonen M; Wouters J
    Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binaural interference in bilateral cochlear-implant listeners.
    Best V; Laback B; Majdak P
    J Acoust Soc Am; 2011 Nov; 130(5):2939-50. PubMed ID: 22087922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users.
    van Hoesel RJ
    Hear Res; 2012 Jun; 288(1-2):100-13. PubMed ID: 22226928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractory effects of the N1 event-related potential in experienced cochlear implant patients.
    Cowper-Smith CD; Green J; Maessen H; Bance M; Newman AJ
    Int J Audiol; 2013 Feb; 52(2):104-12. PubMed ID: 23282338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.
    Krüger B; Büchner A; Nogueira W
    Hear Res; 2017 Sep; 353():185-196. PubMed ID: 28688755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial hearing in a child with auditory neuropathy spectrum disorder and bilateral cochlear implants.
    Johnstone PM; Yeager KR; Noss E
    Int J Audiol; 2013 Jun; 52(6):400-8. PubMed ID: 23586418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighting of cues for fricative place of articulation perception by children wearing cochlear implants.
    Hedrick M; Bahng J; von Hapsburg D; Younger MS
    Int J Audiol; 2011 Aug; 50(8):540-7. PubMed ID: 21604957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can comodulation masking release occur when frequency changes could promote perceptual segregation of the on-frequency and flanking bands?
    Verhey JL; Epp B; Stasiak A; Winter IM
    Adv Exp Med Biol; 2013; 787():475-82. PubMed ID: 23716254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.