BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 23220211)

  • 1. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.
    Wu M; Frieboes HB; Chaplain MA; McDougall SR; Cristini V; Lowengrub JS
    J Theor Biol; 2014 Aug; 355():194-207. PubMed ID: 24751927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.
    Welter M; Rieger H
    PLoS One; 2013; 8(8):e70395. PubMed ID: 23940570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model.
    Jain RK; Tong RT; Munn LL
    Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.
    Soltani M; Chen P
    PLoS One; 2013; 8(6):e67025. PubMed ID: 23840579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts.
    Simonsen TG; Gaustad JV; Leinaas MN; Rofstad EK
    PLoS One; 2012; 7(6):e40006. PubMed ID: 22768196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.
    Moghadam MC; Deyranlou A; Sharifi A; Niazmand H
    Microvasc Res; 2015 Sep; 101():62-71. PubMed ID: 26122936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis.
    Guo P; Fu BM
    J Biomech Eng; 2012 Apr; 134(4):041003. PubMed ID: 22667678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico investigations of intratumoral heterogeneous interstitial fluid pressure.
    Waldeland JO; Gaustad JV; Rofstad EK; Evje S
    J Theor Biol; 2021 Oct; 526():110787. PubMed ID: 34087266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial stress and fluid pressure within a growing tumor.
    Sarntinoranont M; Rooney F; Ferrari M
    Ann Biomed Eng; 2003 Mar; 31(3):327-35. PubMed ID: 12680730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis.
    Rofstad EK; Galappathi K; Mathiesen BS
    Neoplasia; 2014 Jul; 16(7):586-94. PubMed ID: 25117980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model.
    Mohammadi M; Chen P
    Microvasc Res; 2015 Sep; 101():26-32. PubMed ID: 26093178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of lymphatic drainage from tissues using homogenization theory.
    Roose T; Swartz MA
    J Biomech; 2012 Jan; 45(1):107-15. PubMed ID: 22036032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model of the effect of interstitial fluid pressure on angiogenic behavior in solid tumors.
    Phipps C; Kohandel M
    Comput Math Methods Med; 2011; 2011():843765. PubMed ID: 21912571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors.
    Skliarenko JV; Lunt SJ; Gordon ML; Vitkin A; Milosevic M; Hill RP
    Cancer Res; 2006 Feb; 66(4):2074-80. PubMed ID: 16489007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug transport modeling in solid tumors: A computational exploration of spatial heterogeneity of biophysical properties.
    Salavati H; Pullens P; Ceelen W; Debbaut C
    Comput Biol Med; 2023 Sep; 163():107190. PubMed ID: 37392620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High interstitial fluid pressure in rat tongue cancer is related to increased lymph vessel area, tumor size, invasiveness and decreased body weight.
    Raju B; Haug SR; Ibrahim SO; Heyeraas KJ
    J Oral Pathol Med; 2008 Mar; 37(3):137-44. PubMed ID: 18251937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive imaging of barriers to drug delivery in tumors.
    Hassid Y; Eyal E; Margalit R; Furman-Haran E; Degani H
    Microvasc Res; 2008 Aug; 76(2):94-103. PubMed ID: 18638494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse.
    Stylianopoulos T; Martin JD; Snuderl M; Mpekris F; Jain SR; Jain RK
    Cancer Res; 2013 Jul; 73(13):3833-41. PubMed ID: 23633490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours.
    Lunt SJ; Kalliomaki TM; Brown A; Yang VX; Milosevic M; Hill RP
    BMC Cancer; 2008 Jan; 8():2. PubMed ID: 18179711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.