These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 23220238)
41. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
42. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Herrero S; González-Cabrera J; Ferré J; Bakker PL; de Maagd RA Biochem J; 2004 Dec; 384(Pt 3):507-13. PubMed ID: 15320864 [TBL] [Abstract][Full Text] [Related]
43. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549 [TBL] [Abstract][Full Text] [Related]
44. Growth variation among Bacillus thuringiensis strains can affect screening procedures for supernatant-secreted toxins against insect pests. Argôlo Filho RC; Gomes RA; Barreto MR; de P Lana U; Valicente FH; Loguercio LL Pest Manag Sci; 2011 Sep; 67(9):1184-92. PubMed ID: 21618404 [TBL] [Abstract][Full Text] [Related]
45. The role of Bacillus thuringiensis Cry1C and Cry1E separate structural domains in the interaction with Spodoptera littoralis gut epithelial cells. Avisar D; Keller M; Gazit E; Prudovsky E; Sneh B; Zilberstein A J Biol Chem; 2004 Apr; 279(16):15779-86. PubMed ID: 14963036 [TBL] [Abstract][Full Text] [Related]
46. Cytolytic activity of Bacillus thuringiensis CryIC and CryIAc toxins to Spodoptera sp. midgut epithelial cells in vitro. Wang SW; McCarthy WJ In Vitro Cell Dev Biol Anim; 1997 Apr; 33(4):315-23. PubMed ID: 9156349 [TBL] [Abstract][Full Text] [Related]
47. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
48. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Lázaro-Berenguer M; Quan Y; Hernández-Martínez P; Ferré J Sci Rep; 2022 Mar; 12(1):4578. PubMed ID: 35301405 [TBL] [Abstract][Full Text] [Related]
49. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). Aranda E; Sanchez J; Peferoen M; Güereca L; Bravo A J Invertebr Pathol; 1996 Nov; 68(3):203-12. PubMed ID: 8931361 [TBL] [Abstract][Full Text] [Related]
50. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. Ben Hamadou-Charfi D; Boukedi H; Abdelkefi-Mesrati L; Tounsi S; Jaoua S J Invertebr Pathol; 2013 Oct; 114(2):139-43. PubMed ID: 23876657 [TBL] [Abstract][Full Text] [Related]
51. Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities. Sellami S; Zghal T; Cherif M; Zalila-Kolsi I; Jaoua S; Jamoussi K J Basic Microbiol; 2013 Jun; 53(6):539-48. PubMed ID: 22915162 [TBL] [Abstract][Full Text] [Related]
52. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Zhang Q; Hua G; Adang MJ Insect Sci; 2017 Oct; 24(5):714-729. PubMed ID: 27628909 [TBL] [Abstract][Full Text] [Related]
53. Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin. Gómez I; Rodríguez-Chamorro DE; Flores-Ramírez G; Grande R; Zúñiga F; Portugal FJ; Sánchez J; Pacheco S; Bravo A; Soberón M Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959247 [No Abstract] [Full Text] [Related]
54. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism. Rahman K; Abdullah MA; Ambati S; Taylor MD; Adang MJ Appl Environ Microbiol; 2012 Jan; 78(2):354-62. PubMed ID: 22081566 [TBL] [Abstract][Full Text] [Related]
55. Toxicity of Bacillus thuringiensis crystal proteins against eri silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae). Sandeep Kumar D; Tarakeswari M; Lakshminarayana M; Sujatha M J Invertebr Pathol; 2016 Jul; 138():116-9. PubMed ID: 27377590 [TBL] [Abstract][Full Text] [Related]
56. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor. Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607 [TBL] [Abstract][Full Text] [Related]
57. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Ibargutxi MA; Estela A; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075 [TBL] [Abstract][Full Text] [Related]
58. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera. Somwatcharajit R; Tiantad I; Panbangred W J Invertebr Pathol; 2014 Feb; 116():48-55. PubMed ID: 24412546 [TBL] [Abstract][Full Text] [Related]
59. Screening and characterization of Bacillus thuringiensis isolates for high production of Vip3A and Cry proteins and high thermostability to control Spodoptera spp. Hemthanon T; Promdonkoy B; Boonserm P J Invertebr Pathol; 2023 Nov; 201():108020. PubMed ID: 37956858 [TBL] [Abstract][Full Text] [Related]
60. Combinational Effect of Mhalla D; Ben Farhat-Touzri D; Tounsi S; Trigui M Biomed Res Int; 2018; 2018():3895834. PubMed ID: 30175130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]