These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 23220241)
1. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). Bergamasco VB; Mendes DR; Fernandes OA; Desidério JA; Lemos MV J Invertebr Pathol; 2013 Feb; 112(2):152-8. PubMed ID: 23220241 [TBL] [Abstract][Full Text] [Related]
2. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. BenFarhat-Touzri D; Saadaoui M; Abdelkefi-Mesrati L; Saadaoui I; Azzouz H; Tounsi S J Invertebr Pathol; 2013 Feb; 112(2):142-5. PubMed ID: 23220238 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Liu X; Liu S; Bai S; He K; Zhang Y; Dong H; Zhang T; Wang Z Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668618 [TBL] [Abstract][Full Text] [Related]
4. Specific binding between Wang Z; Fang L; Zhou Z; Pacheco S; Gómez I; Song F; Soberón M; Zhang J; Bravo A J Biol Chem; 2018 Jul; 293(29):11447-11458. PubMed ID: 29858245 [TBL] [Abstract][Full Text] [Related]
5. Bacillus thuringiensis Cry1Da_7 and Cry1B.868 Protein Interactions with Novel Receptors Allow Control of Resistant Fall Armyworms, Spodoptera frugiperda (J.E. Smith). Wang Y; Wang J; Fu X; Nageotte JR; Silverman J; Bretsnyder EC; Chen D; Rydel TJ; Bean GJ; Li KS; Kraft E; Gowda A; Nance A; Moore RG; Pleau MJ; Milligan JS; Anderson HM; Asiimwe P; Evans A; Moar WJ; Martinelli S; Head GP; Haas JA; Baum JA; Yang F; Kerns DL; Jerga A Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175187 [TBL] [Abstract][Full Text] [Related]
6. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Soares Figueiredo C; Nunes Lemes AR; Sebastião I; Desidério JA Appl Biochem Biotechnol; 2019 Jul; 188(3):798-809. PubMed ID: 30706415 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic Effect of Truncated Fragments of Boonyos P; Trakulnalueamsai C; Rungrod A; Chongthammakun S; Promdonkoy B Protein Pept Lett; 2021; 28(2):131-139. PubMed ID: 32586243 [TBL] [Abstract][Full Text] [Related]
8. Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae). Knaak N; Franz AR; Santos GF; Fiuza LM Braz J Biol; 2010 Aug; 70(3):677-84. PubMed ID: 20730357 [TBL] [Abstract][Full Text] [Related]
9. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
10. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by (125)I radiolabeling. Chakroun M; Ferré J Appl Environ Microbiol; 2014 Oct; 80(20):6258-65. PubMed ID: 25002420 [TBL] [Abstract][Full Text] [Related]
11. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. Storer NP; Kubiszak ME; Ed King J; Thompson GD; Santos AC J Invertebr Pathol; 2012 Jul; 110(3):294-300. PubMed ID: 22537834 [TBL] [Abstract][Full Text] [Related]
12. Growth variation among Bacillus thuringiensis strains can affect screening procedures for supernatant-secreted toxins against insect pests. Argôlo Filho RC; Gomes RA; Barreto MR; de P Lana U; Valicente FH; Loguercio LL Pest Manag Sci; 2011 Sep; 67(9):1184-92. PubMed ID: 21618404 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Synergism between Extracellular Polysaccharide from Xue B; Wang M; Wang Z; Shu C; Geng L; Zhang J Toxins (Basel); 2023 Sep; 15(10):. PubMed ID: 37888621 [No Abstract] [Full Text] [Related]
14. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Lázaro-Berenguer M; Quan Y; Hernández-Martínez P; Ferré J Sci Rep; 2022 Mar; 12(1):4578. PubMed ID: 35301405 [TBL] [Abstract][Full Text] [Related]
15. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. Lemes AR; Davolos CC; Legori PC; Fernandes OA; Ferré J; Lemos MV; Desiderio JA PLoS One; 2014; 9(9):e107196. PubMed ID: 25275646 [TBL] [Abstract][Full Text] [Related]
16. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
17. No positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for management of Vip3Aa resistance in Spodoptera frugiperda. Gilreath RT; Kerns DL; Huang F; Yang F Pest Manag Sci; 2021 Apr; 77(4):1963-1970. PubMed ID: 33314557 [TBL] [Abstract][Full Text] [Related]
18. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Sena JA; Hernández-Rodríguez CS; Ferré J Appl Environ Microbiol; 2009 Apr; 75(7):2236-7. PubMed ID: 19181834 [TBL] [Abstract][Full Text] [Related]
19. Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically-modified soybean expressing Cry1Ac and Cry1F proteins. Machado EP; Dos S Rodrigues Junior GL; Somavilla JC; Führ FM; Zago SL; Marques LH; Santos AC; Nowatzki T; Dahmer ML; Omoto C; Bernardi O Pest Manag Sci; 2020 Dec; 76(12):4029-4035. PubMed ID: 32520447 [TBL] [Abstract][Full Text] [Related]
20. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Caccia S; Chakroun M; Vinokurov K; Ferré J J Insect Physiol; 2014 Aug; 67():76-84. PubMed ID: 24979528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]