These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23220278)

  • 1. Theoretical studies on the common catalytic mechanism of transketolase by using simplified models.
    Sheng X; Liu Y; Liu C
    J Mol Graph Model; 2013 Feb; 39():23-8. PubMed ID: 23220278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate.
    Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K
    Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II.
    Vyazmensky M; Steinmetz A; Meyer D; Golbik R; Barak Z; Tittmann K; Chipman DM
    Biochemistry; 2011 Apr; 50(15):3250-60. PubMed ID: 21370850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hitherto unknown transketolase-catalyzed reaction.
    Sevostyanova IA; Solovjeva ON; Kochetov GA
    Biochem Biophys Res Commun; 2004 Jan; 313(3):771-4. PubMed ID: 14697258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of transketolase substrates on its conformation.
    Kovina MV; Tikhonova OV; Solov'eva ON; Bykova IA; Ivanov AS; Kochetov GA
    Biochem Biophys Res Commun; 2000 Sep; 275(3):968-72. PubMed ID: 10973829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted or stepwise hydrogen transfer in the transfer hydrogenation of acetophenone catalyzed by ruthenium-acetamido complex: a theoretical mechanistic investigation.
    Guo X; Tang Y; Zhang X; Lei M
    J Phys Chem A; 2011 Nov; 115(44):12321-30. PubMed ID: 21974747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of Diradicals Involved in the Yeast Transketolase Catalyzed Keto-Transferring Reactions.
    Hsu NS; Wang YL; Lin KH; Chang CF; Ke SC; Lyu SY; Hsu LJ; Li YS; Chen SC; Wang KC; Li TL
    Chembiochem; 2018 Nov; 19(22):2395-2402. PubMed ID: 30155962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-of-the-sites reactivity of transketolase from Saccharomyces cerevisiae.
    Sevostyanova I; Solovjeva O; Selivanov V; Kochetov G
    Biochem Biophys Res Commun; 2009 Feb; 379(4):851-4. PubMed ID: 19121289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions.
    Tachikawa H; Igarashi M; Nishihira J; Ishibashi T
    J Photochem Photobiol B; 2005 Apr; 79(1):11-23. PubMed ID: 15792875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2.
    Costentin C; Drouet S; Passard G; Robert M; Savéant JM
    J Am Chem Soc; 2013 Jun; 135(24):9023-31. PubMed ID: 23692448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of human transketolase and new insights into its mode of action.
    Mitschke L; Parthier C; Schröder-Tittmann K; Coy J; Lüdtke S; Tittmann K
    J Biol Chem; 2010 Oct; 285(41):31559-70. PubMed ID: 20667822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M; Schiøtt B
    J Comput Chem; 2008 May; 29(7):1037-47. PubMed ID: 18058864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.