These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23220430)

  • 1. Prospective active marker motion correction improves statistical power in BOLD fMRI.
    Muraskin J; Ooi MB; Goldman RI; Krueger S; Thomas WJ; Sajda P; Brown TR
    Neuroimage; 2013 Mar; 68():154-61. PubMed ID: 23220430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLIMM: Slice localization integrated MRI monitoring.
    Sui Y; Afacan O; Gholipour A; Warfield SK
    Neuroimage; 2020 Dec; 223():117280. PubMed ID: 32853815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data.
    Lanka P; Deshpande G
    Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data.
    Bright MG; Murphy K
    Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin saturation artifact correction using slice-to-volume registration motion estimates for fMRI time series.
    Bhagalia R; Kim B
    Med Phys; 2008 Feb; 35(2):424-34. PubMed ID: 18383662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective slice-by-slice motion correction reduces false positive activations in fMRI with task-correlated motion.
    Schulz J; Siegert T; Bazin PL; Maclaren J; Herbst M; Zaitsev M; Turner R
    Neuroimage; 2014 Jan; 84():124-32. PubMed ID: 23954484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological noise effects on the flip angle selection in BOLD fMRI.
    Gonzalez-Castillo J; Roopchansingh V; Bandettini PA; Bodurka J
    Neuroimage; 2011 Feb; 54(4):2764-78. PubMed ID: 21073963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects.
    Speck O; Hennig J; Zaitsev M
    MAGMA; 2006 May; 19(2):55-61. PubMed ID: 16779560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of echo time and post-processing procedure on blood oxygenation level-dependent (BOLD) functional connectivity analysis.
    Rane S; Mason E; Hussey E; Gore J; Ally BA; Donahue MJ
    Neuroimage; 2014 Jul; 95():39-47. PubMed ID: 24675648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective motion correction in diffusion-weighted imaging using intermediate pseudo-trace-weighted images.
    Hoinkiss DC; Porter DA
    Neuroimage; 2017 Apr; 149():1-14. PubMed ID: 28011251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual echo approach to motion correction for functional connectivity studies.
    Ing A; Schwarzbauer C
    Neuroimage; 2012 Nov; 63(3):1487-97. PubMed ID: 22846657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. False fMRI activation after motion correction.
    Yakupov R; Lei J; Hoffmann MB; Speck O
    Hum Brain Mapp; 2017 Sep; 38(9):4497-4510. PubMed ID: 28580597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI.
    Thesen S; Heid O; Mueller E; Schad LR
    Magn Reson Med; 2000 Sep; 44(3):457-65. PubMed ID: 10975899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2021 Nov; 242():118467. PubMed ID: 34390877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kernel machine-based fMRI physiological noise removal method.
    Song X; Chen NK; Gaur P
    Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to detect, characterize, and remove motion artifact in resting state fMRI.
    Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE
    Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of motion-related artifacts in resting state fMRI using aCompCor.
    Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH
    Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.