These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23220474)

  • 21. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.
    Iwata T
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3210-5. PubMed ID: 25583677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current status and future development of plastics: Solutions for a circular economy and limitations of environmental degradation.
    Skoczinski P; Krause L; Raschka A; Dammer L; Carus M
    Methods Enzymol; 2021; 648():1-26. PubMed ID: 33579399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Not so biodegradable: Polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters.
    Royer SJ; Greco F; Kogler M; Deheyn DD
    PLoS One; 2023; 18(5):e0284681. PubMed ID: 37224114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastics in the marine environment: the dark side of a modern gift.
    Hammer J; Kraak MH; Parsons JR
    Rev Environ Contam Toxicol; 2012; 220():1-44. PubMed ID: 22610295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable plastics from renewable sources.
    Flieger M; Kantorová M; Prell A; Rezanka T; Votruba J
    Folia Microbiol (Praha); 2003; 48(1):27-44. PubMed ID: 12744074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates.
    Albuquerque PBS; Malafaia CB
    Int J Biol Macromol; 2018 Feb; 107(Pt A):615-625. PubMed ID: 28916381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological degradation of plastics: a comprehensive review.
    Shah AA; Hasan F; Hameed A; Ahmed S
    Biotechnol Adv; 2008; 26(3):246-65. PubMed ID: 18337047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nature or petrochemistry?-biologically degradable materials.
    Mecking S
    Angew Chem Int Ed Engl; 2004 Feb; 43(9):1078-85. PubMed ID: 14983440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of industrial biotechnology.
    Soetaert W; Vandamme E
    Biotechnol J; 2006; 1(7-8):756-69. PubMed ID: 16897819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of bioplastics in natural environments.
    Emadian SM; Onay TT; Demirel B
    Waste Manag; 2017 Jan; 59():526-536. PubMed ID: 27742230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.
    Townsend AK; Webber ME
    Waste Manag; 2012 Jul; 32(7):1366-77. PubMed ID: 22425189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The second green revolution? Production of plant-based biodegradable plastics.
    Mooney BP
    Biochem J; 2009 Mar; 418(2):219-32. PubMed ID: 19196243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable and compostable alternatives to conventional plastics.
    Song JH; Murphy RJ; Narayan R; Davies GB
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1526):2127-39. PubMed ID: 19528060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate-
    Amasawa E; Yamanishi T; Nakatani J; Hirao M; Sato S
    Environ Sci Technol; 2021 Mar; 55(5):3380-3388. PubMed ID: 33586971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Landfills as a biorefinery to produce biomass and capture biogas.
    Bolan NS; Thangarajan R; Seshadri B; Jena U; Das KC; Wang H; Naidu R
    Bioresour Technol; 2013 May; 135():578-87. PubMed ID: 23069612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial synthesis of biodegradable polyhydroxyalkanoates.
    Verlinden RA; Hill DJ; Kenward MA; Williams CD; Radecka I
    J Appl Microbiol; 2007 Jun; 102(6):1437-49. PubMed ID: 17578408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.