BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23220582)

  • 1. Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse.
    Ilg T; Berger M; Noack S; Rohwer A; Gaßel M
    Insect Biochem Mol Biol; 2013 Feb; 43(2):162-77. PubMed ID: 23220582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinic semialdehyde dehydrogenase from the parasitic cattle tick Rhipicephalus microplus: gene identification, biochemical characterization and comparison with the mouse ortholog.
    Rothacker B; Werr M; Ilg T
    Mol Biochem Parasitol; 2008 Sep; 161(1):32-43. PubMed ID: 18588919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity.
    Gassel M; Wolf C; Noack S; Williams H; Ilg T
    Insect Biochem Mol Biol; 2014 Feb; 45():111-24. PubMed ID: 24365472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterisation of the dopamine receptor II from the cat flea Ctenocephalides felis (CfDopRII).
    Gerber S; Krasky A; Rohwer A; Lindauer S; Closs E; Rognan D; Gunkel N; Selzer PM; Wolf C
    Insect Biochem Mol Biol; 2006 Oct; 36(10):749-58. PubMed ID: 17027841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening.
    Kern C; Wolf C; Bender F; Berger M; Noack S; Schmalz S; Ilg T
    Insect Mol Biol; 2012 Aug; 21(4):456-71. PubMed ID: 22762304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of two arginine kinases from the parasitic insect Ctenocephalides felis.
    Werr M; Cramer J; Ilg T
    Insect Biochem Mol Biol; 2009 Sep; 39(9):634-45. PubMed ID: 19595766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning, partial genomic structure and functional characterization of succinic semialdehyde dehydrogenase genes from the parasitic insects Lucilia cuprina and Ctenocephalides felis.
    Rothacker B; Werr M; Ilg T
    Insect Mol Biol; 2008 Jun; 17(3):279-91. PubMed ID: 18477242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of genes associated with blood feeding in the cat flea, Ctenocephalides felis.
    Greene WK; Macnish MG; Rice KL; Thompson RC
    Parasit Vectors; 2015 Jul; 8():368. PubMed ID: 26168790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei.
    Komatsuzaki N; Nakamura T; Kimura T; Shima J
    Biosci Biotechnol Biochem; 2008 Feb; 72(2):278-85. PubMed ID: 18256502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial characterization of an atypical family I inorganic pyrophosphatase from cattle tick Rhipicephalus (Boophilus) microplus.
    Costa EP; Campos E; de Andrade CP; Façanha AR; Saramago L; Masuda A; Vaz Ida S; Fernandez JH; Moraes J; Logullo C
    Vet Parasitol; 2012 Mar; 184(2-4):238-47. PubMed ID: 22001703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characterization of Lucilia cuprina acetylcholinesterase as a drug target, and the identification of novel inhibitors by high throughput screening.
    Ilg T; Cramer J; Lutz J; Noack S; Schmitt H; Williams H; Newton T
    Insect Biochem Mol Biol; 2011 Jul; 41(7):470-83. PubMed ID: 21530657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers.
    Lawrence AL; Brown GK; Peters B; Spielman DS; Morin-Adeline V; Šlapeta J
    Med Vet Entomol; 2014 Sep; 28(3):330-6. PubMed ID: 24548270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental expression of glutamic acid decarboxylase and of gamma-aminobutyric acid type B receptors in the ascidian Ciona intestinalis.
    Zega G; Biggiogero M; Groppelli S; Candiani S; Oliveri D; Parodi M; Pestarino M; De Bernardi F; Pennati R
    J Comp Neurol; 2008 Jan; 506(3):489-505. PubMed ID: 18041772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of a novel patched-related protein in Apis mellifera and Drosophila melanogaster.
    Pastenes L; Ibáñez F; Bolatto C; Pavéz L; Cambiazo V
    Arch Insect Biochem Physiol; 2008 Jul; 68(3):156-70. PubMed ID: 18563713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling, gene silencing and transcriptional networking of metzincin metalloproteases in the cattle tick, Rhipicephalus (Boophilus) microplus.
    Barnard AC; Nijhof AM; Gaspar AR; Neitz AW; Jongejan F; Maritz-Olivier C
    Vet Parasitol; 2012 May; 186(3-4):403-14. PubMed ID: 22142943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae.
    Coleman ST; Fang TK; Rovinsky SA; Turano FJ; Moye-Rowley WS
    J Biol Chem; 2001 Jan; 276(1):244-50. PubMed ID: 11031268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila GABAergic systems. II. Mutational analysis of chromosomal segment 64AB, a region containing the glutamic acid decarboxylase gene.
    Kulkarni SJ; Newby LM; Jackson FR
    Mol Gen Genet; 1994 Jun; 243(5):555-64. PubMed ID: 8208247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterases of blood-feeding flies and ticks.
    Temeyer KB; Tuckow AP; Brake DK; Li AY; Pérez de León AA
    Chem Biol Interact; 2013 Mar; 203(1):319-22. PubMed ID: 23036311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic dysfunction in mGlu7 receptor-deficient mice as reflected by decreased levels of glutamic acid decarboxylase 65 and 67kDa and increased reelin proteins in the hippocampus.
    Wierońska JM; Brański P; Siwek A; Dybala M; Nowak G; Pilc A
    Brain Res; 2010 Jun; 1334():12-24. PubMed ID: 20353761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase.
    Jackson FR; Newby LM; Kulkarni SJ
    J Neurochem; 1990 Mar; 54(3):1068-78. PubMed ID: 1689376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.