BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 23220698)

  • 1. Printable microfluidic systems using pressure sensitive adhesive material for biosensing devices.
    Wang X; Nilsson D; Norberg P
    Biochim Biophys Acta; 2013 Sep; 1830(9):4398-401. PubMed ID: 23220698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications.
    Ihalainen P; Majumdar H; Määttänen A; Wang S; Österbacka R; Peltonen J
    Biochim Biophys Acta; 2013 Sep; 1830(9):4391-7. PubMed ID: 23000571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
    Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD
    Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
    Fournier Y; Maeder T; Boutinard-Rouelle G; Barras A; Craquelin N; Ryser P
    Sensors (Basel); 2010; 10(12):11156-73. PubMed ID: 22163518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printed organo-functionalized graphene for biosensing applications.
    Wisitsoraat A; Mensing JP; Karuwan C; Sriprachuabwong C; Jaruwongrungsee K; Phokharatkul D; Daniels TM; Liewhiran C; Tuantranont A
    Biosens Bioelectron; 2017 Jan; 87():7-17. PubMed ID: 27504792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated passive-flow microfluidic biosensor with organic photodiodes for ultra-sensitive pathogen detection in water.
    Pires NM; Dong T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4411-4. PubMed ID: 25570970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
    Arayanarakool R; Le Gac S; van den Berg A
    Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printable Bioelectronics To Investigate Functional Biological Interfaces.
    Manoli K; Magliulo M; Mulla MY; Singh M; Sabbatini L; Palazzo G; Torsi L
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12562-76. PubMed ID: 26420480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper as a platform for sensing applications and other devices: a review.
    Mahadeva SK; Walus K; Stoeber B
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8345-62. PubMed ID: 25745887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection.
    Chen J; Zhou Y; Wang D; He F; Rotello VM; Carter KR; Watkins JJ; Nugen SR
    Lab Chip; 2015 Jul; 15(14):3086-94. PubMed ID: 26095586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystal biosensors towards on-chip integration.
    Threm D; Nazirizadeh Y; Gerken M
    J Biophotonics; 2012 Aug; 5(8-9):601-16. PubMed ID: 22678992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet printed (bio)chemical sensing devices.
    Komuro N; Takaki S; Suzuki K; Citterio D
    Anal Bioanal Chem; 2013 Jul; 405(17):5785-805. PubMed ID: 23677254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-probing.
    Routenberg DA; Reed MA
    Lab Chip; 2010 Jan; 10(1):123-7. PubMed ID: 20024060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing the use of PDIF-CN2 molecules in the development of n-type organic field-effect transistors for biosensing applications.
    Barra M; Viggiano D; Ambrosino P; Bloisi F; Di Girolamo FV; Soldovieri MV; Taglialatela M; Cassinese A
    Biochim Biophys Acta; 2013 Sep; 1830(9):4365-73. PubMed ID: 23220699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.