These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Research highlights: printing the future of microfabrication. Tseng P; Murray C; Kim D; Di Carlo D Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475 [TBL] [Abstract][Full Text] [Related]
24. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers. Rajendra V; Sicard C; Brennan JD; Brook MA Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713 [TBL] [Abstract][Full Text] [Related]
25. Organic bioelectronics: a new era for organic electronics. Malliaras GG Biochim Biophys Acta; 2013 Sep; 1830(9):4286-7. PubMed ID: 23079584 [TBL] [Abstract][Full Text] [Related]
26. Biosensors with label-free detection designed for diagnostic applications. Rapp BE; Gruhl FJ; Länge K Anal Bioanal Chem; 2010 Nov; 398(6):2403-12. PubMed ID: 20563563 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110 [TBL] [Abstract][Full Text] [Related]
28. Recent developments and patents on biological sensing using nanoparticles in microfluidic systems. Lei KF Recent Pat Nanotechnol; 2013 Jan; 7(1):81-90. PubMed ID: 22974430 [TBL] [Abstract][Full Text] [Related]
29. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Date A; Pasini P; Daunert S Anal Bioanal Chem; 2010 Sep; 398(1):349-56. PubMed ID: 20582692 [TBL] [Abstract][Full Text] [Related]
36. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing. Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777 [TBL] [Abstract][Full Text] [Related]
37. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography. Devaraju NS; Unger MA Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861 [TBL] [Abstract][Full Text] [Related]
38. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379 [TBL] [Abstract][Full Text] [Related]
39. Label-free biosensors based on in situ formed and functionalized microwires in microfluidic devices. Xing Y; Wyss A; Esser N; Dittrich PS Analyst; 2015 Dec; 140(23):7896-901. PubMed ID: 26469763 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of paper-based microfluidic sensors by printing. Li X; Tian J; Garnier G; Shen W Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]