These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 23220738)
21. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy. Song F; Wang T; Wang X; Xu C; He L; Wan J; Van Haesendonck C; Ringer SP; Han M; Liu Z; Wang G Small; 2010 Feb; 6(3):446-51. PubMed ID: 20077517 [TBL] [Abstract][Full Text] [Related]
22. Electron transport through dangling-bond silicon wires on H-passivated Si(100). Kepenekian M; Novaes FD; Robles R; Monturet S; Kawai H; Joachim C; Lorente N J Phys Condens Matter; 2013 Jan; 25(2):025503. PubMed ID: 23197188 [TBL] [Abstract][Full Text] [Related]
23. Structural and Chemical Evolution of l-Cysteine Nanofilm on Si(111)-√3×√3-Ag: From Preferential Growth at Step Edges and Antiphase Boundaries at Room Temperature to Adsorbate-Mediated Metal Cluster Formation at Elevated Temperature. Farkhondeh H; Rahsepar FR; Zhang L; Leung KT Langmuir; 2019 Dec; 35(49):16185-16200. PubMed ID: 31661626 [TBL] [Abstract][Full Text] [Related]
24. Interfacial Coupling and Electronic Structure of Two-Dimensional Silicon Grown on the Ag(111) Surface at High Temperature. Feng J; Wagner SR; Zhang P Sci Rep; 2015 Jun; 5():10310. PubMed ID: 26084916 [TBL] [Abstract][Full Text] [Related]
25. The IP₆ micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect. Wang N; Wen Y; Wang Y; Zhang R; Chen X; Ling B; Huan S; Yang H Nanotechnology; 2012 Apr; 23(14):145702. PubMed ID: 22434016 [TBL] [Abstract][Full Text] [Related]
27. Realization of a Strained Atomic Wire Superlattice. Song I; Goh JS; Lee SH; Jung SW; Shin JS; Yamane H; Kosugi N; Yeom HW ACS Nano; 2015 Nov; 9(11):10621-7. PubMed ID: 26446292 [TBL] [Abstract][Full Text] [Related]
28. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
29. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite. Dawn A; Nandi AK J Phys Chem B; 2006 Sep; 110(37):18291-8. PubMed ID: 16970449 [TBL] [Abstract][Full Text] [Related]
30. Fluorescence properties of Ag nanoparticles in water. Siwach OP; Sen P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):659-63. PubMed ID: 17573235 [TBL] [Abstract][Full Text] [Related]
31. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. An C; Wang J; Jiang W; Zhang M; Ming X; Wang S; Zhang Q Nanoscale; 2012 Sep; 4(18):5646-50. PubMed ID: 22869008 [TBL] [Abstract][Full Text] [Related]
32. Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability. Wang Z; Liu J; Chen W Dalton Trans; 2012 Apr; 41(16):4866-70. PubMed ID: 22395525 [TBL] [Abstract][Full Text] [Related]
33. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres. Zang Y; He X; Li J; Yin J; Li K; Yue C; Wu Z; Wu S; Kang J Nanoscale; 2013 Jan; 5(2):574-80. PubMed ID: 23196786 [TBL] [Abstract][Full Text] [Related]
34. Tuning the surface plasmon resonance of silver nanoclusters by oxygen exposure and low-energy plasma annealing. Antad V; Simonot L; Babonneau D Nanotechnology; 2013 Feb; 24(4):045606. PubMed ID: 23299467 [TBL] [Abstract][Full Text] [Related]