BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23220750)

  • 1. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography.
    Vasić B; Kratzer M; Matković A; Nevosad A; Ralević U; Jovanović D; Ganser C; Teichert C; Gajić R
    Nanotechnology; 2013 Jan; 24(1):015303. PubMed ID: 23220750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation, dissection, and lithography using modified tapping mode atomic force microscope.
    Liu Z; Li Z; Wei G; Song Y; Wang L; Sun L
    Microsc Res Tech; 2006 Dec; 69(12):998-1004. PubMed ID: 16981196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutting of oxidized graphene into nanosized pieces.
    Fujii S; Enoki T
    J Am Chem Soc; 2010 Jul; 132(29):10034-41. PubMed ID: 20590120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization study on machining PMMA thin-film using AFM tip-based dynamic plowing lithography.
    Yan Y; He Y; Geng Y; Hu Z; Zhao X
    Scanning; 2016 Nov; 38(6):612-618. PubMed ID: 26890820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes.
    Boneschanscher MP; van der Lit J; Sun Z; Swart I; Liljeroth P; Vanmaekelbergh D
    ACS Nano; 2012 Nov; 6(11):10216-21. PubMed ID: 23039032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.
    Kurra N; Prakash G; Basavaraja S; Fisher TS; Kulkarni GU; Reifenberger RG
    Nanotechnology; 2011 Jun; 22(24):245302. PubMed ID: 21508457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM force mapping for characterizing patterns of electrostatic charges on SiO2 electrets.
    Zhang Y; Zhao D; Tan X; Cao T; Zhang X
    Langmuir; 2010 Jul; 26(14):11958-62. PubMed ID: 20476727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.
    Hu S; Raman A
    Nanotechnology; 2008 Sep; 19(37):375704. PubMed ID: 21832558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.
    Lanza M; Gao T; Yin Z; Zhang Y; Liu Z; Tong Y; Shen Z; Duan H
    Nanoscale; 2013 Nov; 5(22):10816-23. PubMed ID: 24072032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity.
    Konečný M; Bartošík M; Mach J; Švarc V; Nezval D; Piastek J; Procházka P; Cahlík A; Šikola T
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11987-11994. PubMed ID: 29557163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and manipulation of adsorbed lipid vesicles by an AFM tip: experiment and Monte Carlo simulations.
    Dimitrievski K; Zäch M; Zhdanov VP; Kasemo B
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):115-25. PubMed ID: 16414252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.
    Walczyk W; Hain N; Schönherr H
    Soft Matter; 2014 Aug; 10(32):5945-54. PubMed ID: 24988375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFM diagnostics of graphene-based quantum Hall devices.
    Sikora A; Woszczyna M; Friedemann M; Ahlers FJ; Kalbac M
    Micron; 2012 Feb; 43(2-3):479-86. PubMed ID: 22177467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local current mapping and patterning of reduced graphene oxide.
    Mativetsky JM; Treossi E; Orgiu E; Melucci M; Veronese GP; Samorì P; Palermo V
    J Am Chem Soc; 2010 Oct; 132(40):14130-6. PubMed ID: 20925312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography.
    Rosa LG; Liang J
    J Phys Condens Matter; 2009 Dec; 21(48):483001. PubMed ID: 21832507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies.
    Meza JA; Lubin C; Thoyer F; Cousty J
    Nanotechnology; 2015 Jan; 26(25):255704. PubMed ID: 26040291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite.
    Yang Y; Lin J
    Microsc Microanal; 2016 Apr; 22(2):432-9. PubMed ID: 26847869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.