These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 23220908)
1. Density functional study of structural defects in h-BNC2 sheets. Srivastava P; Sen P J Phys Condens Matter; 2013 Jan; 25(2):025304. PubMed ID: 23220908 [TBL] [Abstract][Full Text] [Related]
2. Structure, stability and defects of single layer hexagonal BN in comparison to graphene. Slotman GJ; Fasolino A J Phys Condens Matter; 2013 Jan; 25(4):045009. PubMed ID: 23249480 [TBL] [Abstract][Full Text] [Related]
3. First-principles study of electronic and magnetic properties of transition metal adsorbed h-BNC2 sheets. Srivastava P; Deshpande M; Sen P Phys Chem Chem Phys; 2011 Dec; 13(48):21593-9. PubMed ID: 22068843 [TBL] [Abstract][Full Text] [Related]
4. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884 [TBL] [Abstract][Full Text] [Related]
5. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. Li H; Zeng XC ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158 [TBL] [Abstract][Full Text] [Related]
6. Structure, optical properties and defects in nitride (III-V) nanoscale cage clusters. Shevlin SA; Guo ZX; van Dam HJ; Sherwood P; A Catlow CR; Sokol AA; Woodley SM Phys Chem Chem Phys; 2008 Apr; 10(14):1944-59. PubMed ID: 18368187 [TBL] [Abstract][Full Text] [Related]
7. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Yeo JJ; Liu Z; Ng TY Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664 [TBL] [Abstract][Full Text] [Related]
8. Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects. Singh R; Kroll P J Phys Condens Matter; 2009 May; 21(19):196002. PubMed ID: 21825500 [TBL] [Abstract][Full Text] [Related]
9. Vacancy clusters in graphane as quantum dots. Singh AK; Penev ES; Yakobson BI ACS Nano; 2010 Jun; 4(6):3510-4. PubMed ID: 20465240 [TBL] [Abstract][Full Text] [Related]
10. Band gap opening of graphene by doping small boron nitride domains. Fan X; Shen Z; Liu AQ; Kuo JL Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594 [TBL] [Abstract][Full Text] [Related]
12. Visualizing the influence of point defects on the electronic band structure of graphene. Farjam M J Phys Condens Matter; 2014 Apr; 26(15):155502. PubMed ID: 24675693 [TBL] [Abstract][Full Text] [Related]
13. Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene. Ma Y; Dai Y; Guo M; Niu C; Yu L; Huang B Nanoscale; 2011 May; 3(5):2301-6. PubMed ID: 21494734 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Zhao Y; Wu X; Yang J; Zeng XC Phys Chem Chem Phys; 2012 Apr; 14(16):5545-50. PubMed ID: 22407363 [TBL] [Abstract][Full Text] [Related]
15. Defective structure of BN nanotubes: from single vacancies to dislocation lines. Zobelli A; Ewels CP; Gloter A; Seifert G; Stephan O; Csillag S; Colliex C Nano Lett; 2006 Sep; 6(9):1955-60. PubMed ID: 16968007 [TBL] [Abstract][Full Text] [Related]
16. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. Pan S; Aksay IA ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697 [TBL] [Abstract][Full Text] [Related]
17. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride. Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975 [TBL] [Abstract][Full Text] [Related]
18. Energetics of atomic scale structure changes in graphene. Skowron ST; Lebedeva IV; Popov AM; Bichoutskaia E Chem Soc Rev; 2015 May; 44(10):3143-76. PubMed ID: 25811047 [TBL] [Abstract][Full Text] [Related]
19. Transport properties of graphene nanoroads in boron nitride sheets. Jung J; Qiao Z; Niu Q; Macdonald AH Nano Lett; 2012 Jun; 12(6):2936-40. PubMed ID: 22524401 [TBL] [Abstract][Full Text] [Related]
20. A computational modelling study of oxygen vacancies at LaCoO3 perovskite surfaces. Khan S; Oldman RJ; Corà F; Catlow CR; French SA; Axon SA Phys Chem Chem Phys; 2006 Nov; 8(44):5207-22. PubMed ID: 17203145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]