These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23220909)

  • 21. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO
    Hatef A; Zamani N; Johnston W
    J Phys Condens Matter; 2017 Apr; 29(15):155305. PubMed ID: 28222047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.
    Zhu Z; Guo J; Liu W; Li Z; Han B; Zhang W; Tang Z
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13571-5. PubMed ID: 24346941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.
    Sadeghi SM; Hatef A; Fortin-Deschenes S; Meunier M
    Nanotechnology; 2013 May; 24(20):205201. PubMed ID: 23609222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect.
    Zhang W; Govorov AO; Bryant GW
    Phys Rev Lett; 2006 Oct; 97(14):146804. PubMed ID: 17155282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle-enzyme hybrid systems for nanobiotechnology.
    Willner I; Basnar B; Willner B
    FEBS J; 2007 Jan; 274(2):302-9. PubMed ID: 17181543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence.
    Nepal D; Drummy LF; Biswas S; Park K; Vaia RA
    ACS Nano; 2013 Oct; 7(10):9064-74. PubMed ID: 24004164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast near-field spectroscopy of single semiconductor quantum dots.
    Lienau C
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):861-79. PubMed ID: 15306498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.
    Cox JD; Singh MR; Antón MA; Carreño F
    J Phys Condens Matter; 2013 Sep; 25(38):385302. PubMed ID: 23988724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum dots and nanocomposites.
    Mansur HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(2):113-29. PubMed ID: 20104596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled photoluminescence from self-assembled semiconductor-metal quantum dot hybrid array films.
    Haridas M; Basu JK
    Nanotechnology; 2010 Oct; 21(41):415202. PubMed ID: 20844322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absorption properties of metal-semiconductor hybrid nanoparticles.
    Shaviv E; Schubert O; Alves-Santos M; Goldoni G; Di Felice R; Vallée F; Del Fatti N; Banin U; Sönnichsen C
    ACS Nano; 2011 Jun; 5(6):4712-9. PubMed ID: 21648441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.
    Sadeghi SM; Gutha RR; Wing WJ; Sharp C; Capps L; Mao C
    J Phys D Appl Phys; 2017; 50(14):. PubMed ID: 29618846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local refractive index probed via the fluorescence decay of semiconductor quantum dots.
    Pillonnet A; Fleury P; Chizhik AI; Chizhik AM; Amans D; Ledoux G; Kulzer F; Meixner AJ; Dujardin C
    Opt Express; 2012 Jan; 20(3):3200-8. PubMed ID: 22330557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems.
    Trotsiuk L; Muravitskaya A; Kulakovich O; Guzatov D; Ramanenka A; Kelestemur Y; Demir HV; Gaponenko S
    Nanotechnology; 2020 Mar; 31(10):105201. PubMed ID: 31751975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport properties of coupled semiconductor quantum dots.
    Jeong H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3329-32. PubMed ID: 17252758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.