BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23221270)

  • 21. S-factor calculations for mouse models using Monte-Carlo simulations.
    Bitar A; Lisbona A; Bardiès M
    Q J Nucl Med Mol Imaging; 2007 Dec; 51(4):343-51. PubMed ID: 17538523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers.
    Xie T; Zaidi H
    Eur J Nucl Med Mol Imaging; 2016 Dec; 43(13):2290-2300. PubMed ID: 27349243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.
    Lanconelli N; Pacilio M; Lo Meo S; Botta F; Di Dia A; Aroche AT; Pérez MA; Cremonesi M
    Phys Med Biol; 2012 Jan; 57(2):517-33. PubMed ID: 22217735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact on 141Ce, 144Ce, 95Zr, and 90Sr beta emitter dose coefficients of photon and electron SAFs calculated with ICRP/ICRU reference adult voxel computational phantoms.
    Li WB; Zankl M; Schlattl H; Petoussi-Henss N; Eckerman KF; Bolch WE; Oeh U; Hoeschen C
    Health Phys; 2010 Oct; 99(4):503-10. PubMed ID: 20838091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry.
    Clairand I; Ricard M; Gouriou J; Di Paola M; Aubert B
    J Nucl Med; 1999 Sep; 40(9):1517-23. PubMed ID: 10492374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with (90)Y, (111)In, or (177)Lu.
    Konijnenberg MW; Bijster M; Krenning EP; De Jong M
    J Nucl Med; 2004 Jul; 45(7):1260-9. PubMed ID: 15235075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo N-Particle (MCNP) Modeling of the Cellular Dosimetry of 64Cu: Comparison with MIRDcell S Values and Implications for Studies of Its Cytotoxic Effects.
    Cai Z; Kwon YL; Reilly RM
    J Nucl Med; 2017 Feb; 58(2):339-345. PubMed ID: 27660146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The determination of patient dose from (18)F-FDG PET/CT examination.
    Khamwan K; Krisanachinda A; Pasawang P
    Radiat Prot Dosimetry; 2010 Sep; 141(1):50-5. PubMed ID: 20400773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-dependent dose calculations for common PET radionuclides and brain radiotracers in nonhuman primate computational models.
    Xie T; Chen X; Zaidi H
    Med Phys; 2020 Sep; 47(9):4465-4476. PubMed ID: 32542710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography.
    Miller PW; Long NJ; Vilar R; Gee AD
    Angew Chem Int Ed Engl; 2008; 47(47):8998-9033. PubMed ID: 18988199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dose point kernels for 2,174 radionuclides.
    Graves SA; Flynn RT; Hyer DE
    Med Phys; 2019 Nov; 46(11):5284-5293. PubMed ID: 31461537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET.
    Champion C; Le Loirec C
    Phys Med Biol; 2007 Nov; 52(22):6605-25. PubMed ID: 17975286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2010 May; 55(9):2555-72. PubMed ID: 20393237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiopharmaceutical chemistry for positron emission tomography.
    Li Z; Conti PS
    Adv Drug Deliv Rev; 2010 Aug; 62(11):1031-51. PubMed ID: 20854860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo modelling of singles-mode transmission data for small animal PET scanners.
    Vandervoort E; Camborde ML; Jan S; Sossi V
    Phys Med Biol; 2007 Jun; 52(11):3169-84. PubMed ID: 17505096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation absorbed doses to the walls of hollow organs.
    Stubbs JB; Evans JF; Stabin MG
    J Nucl Med; 1998 Nov; 39(11):1989-95. PubMed ID: 9829596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes.
    Stabin MG; Konijnenberg MW
    J Nucl Med; 2000 Jan; 41(1):149-60. PubMed ID: 10647618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production.
    Uusijärvi H; Bernhardt P; Rösch F; Maecke HR; Forssell-Aronsson E
    J Nucl Med; 2006 May; 47(5):807-14. PubMed ID: 16644751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.