These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23221409)

  • 1. Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture.
    Krutky MA; Trumbower RD; Perreault EJ
    J Neurophysiol; 2013 Feb; 109(4):1045-54. PubMed ID: 23221409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.
    Krutky MA; Ravichandran VJ; Trumbower RD; Perreault EJ
    J Neurophysiol; 2010 Jan; 103(1):429-40. PubMed ID: 19906880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture.
    Krutky MA; Trumbower RD; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5938-41. PubMed ID: 19965062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of age on stiffness modulation during postural maintenance of the arm.
    Gibo TL; Bastian AJ; Okamura AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650395. PubMed ID: 24187214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control.
    Stroeve S
    Biol Cybern; 1999 Nov; 81(5-6):475-94. PubMed ID: 10592022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar ataxia impairs modulation of arm stiffness during postural maintenance.
    Gibo TL; Bastian AJ; Okamura AM
    J Neurophysiol; 2013 Oct; 110(7):1611-20. PubMed ID: 23843434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effect of muscular cocontraction on the 3-D human arm impedance.
    Patel H; O'Neill G; Artemiadis P
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2602-8. PubMed ID: 24835125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical constraints on the feedforward regulation of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2012 Oct; 108(8):2083-91. PubMed ID: 22832565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endpoint stiffness of the arm is directionally tuned to instability in the environment.
    Franklin DW; Liaw G; Milner TE; Osu R; Burdet E; Kawato M
    J Neurosci; 2007 Jul; 27(29):7705-16. PubMed ID: 17634365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of hand impedance under static conditions and during reaching movement.
    Darainy M; Towhidkhah F; Ostry DJ
    J Neurophysiol; 2007 Apr; 97(4):2676-85. PubMed ID: 17287438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance control is tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Burdet E; Kawato M; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5358-61. PubMed ID: 19163928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance control reduces instability that arises from motor noise.
    Selen LP; Franklin DW; Wolpert DM
    J Neurosci; 2009 Oct; 29(40):12606-16. PubMed ID: 19812335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke.
    Yang CL; Creath RA; Magder L; Rogers MW; McCombe Waller S
    J Neurophysiol; 2019 Apr; 121(4):1465-1477. PubMed ID: 30785824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of muscle coactivation in adaptation of standing posture during arm reaching.
    Pienciak-Siewert A; Horan DP; Ahmed AA
    J Neurophysiol; 2020 Feb; 123(2):529-547. PubMed ID: 31851559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of biodynamic factors on the mechanical impedance of the hand and arm.
    Burström L
    Int Arch Occup Environ Health; 1997; 69(6):437-46. PubMed ID: 9215931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.