BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23221413)

  • 1. Interaction of temporal and ordinal representations in movement sequences.
    Kornysheva K; Sierk A; Diedrichsen J
    J Neurophysiol; 2013 Mar; 109(5):1416-24. PubMed ID: 23221413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent processing of the temporal and ordinal structure of movement sequences.
    Ullén F; Bengtsson SL
    J Neurophysiol; 2003 Dec; 90(6):3725-35. PubMed ID: 14665684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of the temporal and ordinal structure of movement sequences in incidental learning.
    O'Reilly JX; McCarthy KJ; Capizzi M; Nobre AC
    J Neurophysiol; 2008 May; 99(5):2731-5. PubMed ID: 18322005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of rhythmic sequences.
    Ullén F; Bengtsson SL; Ehrsson HH; Forssberg H
    Ann N Y Acad Sci; 2005 Dec; 1060():368-76. PubMed ID: 16597788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation.
    Sakai K; Ramnani N; Passingham RE
    J Neurophysiol; 2002 Oct; 88(4):2035-46. PubMed ID: 12364526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences.
    Bengtsson SL; Ehrsson HH; Forssberg H; Ullén F
    Eur J Neurosci; 2004 May; 19(9):2591-602. PubMed ID: 15128413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent neural control of rhythmic sequences--behavioral and fMRI evidence.
    Ullén F
    Physiol Behav; 2007 Sep; 92(1-2):193-8. PubMed ID: 17568634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human premotor areas parse sequences into their spatial and temporal features.
    Kornysheva K; Diedrichsen J
    Elife; 2014 Aug; 3():e03043. PubMed ID: 25117541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of instruction on the acquisition of sequence knowledge in a sensorimotor task.
    Kirsch W; Hoffmann J
    Acta Psychol (Amst); 2011 Sep; 138(1):85-91. PubMed ID: 21641564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding Temporal Features of Skilled Movements-What, Whether and How?
    Kornysheva K
    Adv Exp Med Biol; 2016; 957():35-54. PubMed ID: 28035559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of temporal and ordinal information during serial interception sequence learning.
    Gobel EW; Sanchez DJ; Reber PJ
    J Exp Psychol Learn Mem Cogn; 2011 Jul; 37(4):994-1000. PubMed ID: 21417511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parieto-frontal coding of reaching: an integrated framework.
    Burnod Y; Baraduc P; Battaglia-Mayer A; Guigon E; Koechlin E; Ferraina S; Lacquaniti F; Caminiti R
    Exp Brain Res; 1999 Dec; 129(3):325-46. PubMed ID: 10591906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas.
    Sohn JW; Lee D
    J Neurosci; 2007 Dec; 27(50):13655-66. PubMed ID: 18077677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences.
    Heideman SG; van Ede F; Nobre AC
    Neuroscience; 2018 Oct; 389():74-84. PubMed ID: 29802816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of movement sequences is related to task characteristics.
    Kovacs AJ; Han DW; Shea CH
    Acta Psychol (Amst); 2009 Sep; 132(1):54-61. PubMed ID: 19631919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early behavioural facilitation by temporal expectations in complex visual-motor sequences.
    Heideman SG; van Ede F; Nobre AC
    J Physiol Paris; 2016 Nov; 110(4 Pt B):487-496. PubMed ID: 28323028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Task and Single-Task Practice Does Not Influence the Attentional Demands of Movement Sequence Representations.
    Pfeifer C; Harenz J; Shea CH; Panzer S
    J Mot Behav; 2024; 56(4):462-474. PubMed ID: 38484757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General motor representations are developed during action-observation.
    Hayes SJ; Elliott D; Bennett SJ
    Exp Brain Res; 2010 Jul; 204(2):199-206. PubMed ID: 20502885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of eye-movements on the development of a movement sequence representation during observational and physical practice.
    Massing M; Blandin Y; Panzer S
    Acta Psychol (Amst); 2018 Jan; 182():1-8. PubMed ID: 29107928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic field theory of movement preparation.
    Erlhagen W; Schöner G
    Psychol Rev; 2002 Jul; 109(3):545-72. PubMed ID: 12088245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.