These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23221711)

  • 1. Toxoflavin lyase enzyme as a marker for selecting potato plant transformants.
    Kim MS; Kim H; Moon JS; Hwang I; Joung H; Jeon JH
    Biosci Biotechnol Biochem; 2012; 76(12):2354-6. PubMed ID: 23221711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel light-dependent selection marker system in plants.
    Koh S; Kim H; Kim J; Goo E; Kim YJ; Choi O; Jwa NS; Ma J; Nagamatsu T; Moon JS; Hwang I
    Plant Biotechnol J; 2011 Apr; 9(3):348-58. PubMed ID: 20731786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The UDP-N-acetylglucosamine:dolichol phosphate-N-acetylglucosamine-phosphotransferase gene as a new selection marker for potato transformation.
    Kim HS; Kim MS; Hwang KA; Park SW; Jeon JH
    Biosci Biotechnol Biochem; 2013; 77(7):1589-92. PubMed ID: 23832343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the product of toxoflavin lyase: degradation via a Baeyer-Villiger oxidation.
    Philmus B; Abdelwahed S; Williams HJ; Fenwick MK; Ealick SE; Begley TP
    J Am Chem Soc; 2012 Mar; 134(11):5326-30. PubMed ID: 22304755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop.
    de Vetten N; Wolters AM; Raemakers K; van der Meer I; ter Stege R; Heeres E; Heeres P; Visser R
    Nat Biotechnol; 2003 Apr; 21(4):439-42. PubMed ID: 12627169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations into the Biosynthesis, Regulation, and Self-Resistance of Toxoflavin in Pseudomonas protegens Pf-5.
    Philmus B; Shaffer BT; Kidarsa TA; Yan Q; Raaijmakers JM; Begley TP; Loper JE
    Chembiochem; 2015 Aug; 16(12):1782-90. PubMed ID: 26077901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic cell selection for chlorsulfuron-resistant mutants in potato: identification of point mutations in the acetohydroxyacid synthase gene.
    Barrell PJ; Latimer JM; Baldwin SJ; Thompson ML; Jacobs JME; Conner AJ
    BMC Biotechnol; 2017 Jun; 17(1):49. PubMed ID: 28587679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potato (Solanum tuberosum L.).
    Chetty VJ; Narváez-Vásquez J; Orozco-Cárdenas ML
    Methods Mol Biol; 2015; 1224():85-96. PubMed ID: 25416251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of plastid transformation efficiency in potato by using vectors with homologous flanking sequences.
    Scotti N; Valkov VT; Cardi T
    GM Crops; 2011; 2(2):89-91. PubMed ID: 21865861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae.
    Kim J; Kim JG; Kang Y; Jang JY; Jog GJ; Lim JY; Kim S; Suga H; Nagamatsu T; Hwang I
    Mol Microbiol; 2004 Nov; 54(4):921-34. PubMed ID: 15522077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid Transformation in Potato: An Important Source of Nutrition and Industrial Materials.
    Valkov VT; Gargano D; Cardi T; Scotti N
    Methods Mol Biol; 2021; 2317():247-256. PubMed ID: 34028773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of carotenoid accumulation in transgenic potato by inducing chromoplast formation with enhanced sink strength.
    Van Eck J; Zhou X; Lu S; Li L
    Methods Mol Biol; 2010; 643():77-93. PubMed ID: 20552445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation.
    Nakamura S; Mano S; Tanaka Y; Ohnishi M; Nakamori C; Araki M; Niwa T; Nishimura M; Kaminaka H; Nakagawa T; Sato Y; Ishiguro S
    Biosci Biotechnol Biochem; 2010; 74(6):1315-9. PubMed ID: 20530878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin.
    Choi JE; Nguyen CM; Lee B; Park JH; Oh JY; Choi JS; Kim JC; Song JK
    PLoS One; 2018; 13(1):e0183893. PubMed ID: 29293506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the plant genome: prospects of selection systems using non-antibiotic marker genes.
    Penna S; Ganapathi TR
    GM Crops; 2010; 1(3):128-36. PubMed ID: 21865868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium-mediated transformation of potato genotypes.
    Kumar A
    Methods Mol Biol; 1995; 44():121-8. PubMed ID: 7581658
    [No Abstract]   [Full Text] [Related]  

  • 17. Transposition-based plant transformation.
    Yan H; Rommens CM
    Plant Physiol; 2007 Feb; 143(2):570-8. PubMed ID: 17142486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli.
    Lee J; Park J; Kim S; Park I; Seo YS
    Mol Plant Pathol; 2016 Jan; 17(1):65-76. PubMed ID: 25845410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering virus resistance using a modified potato gene.
    Cavatorta J; Perez KW; Gray SM; Van Eck J; Yeam I; Jahn M
    Plant Biotechnol J; 2011 Dec; 9(9):1014-21. PubMed ID: 21668622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation.
    Sawahel WA
    Cell Mol Biol Lett; 2002; 7(1):19-29. PubMed ID: 11944047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.