These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 23221832)
21. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer's disease elderly subjects. Manckoundia P; Mourey F; Pfitzenmeyer P; Papaxanthis C Neuroscience; 2006; 137(2):385-92. PubMed ID: 16289889 [TBL] [Abstract][Full Text] [Related]
22. Accuracy and concurrent validity of a sensor-based analysis of sit-to-stand movements in older adults. Regterschot GR; Zhang W; Baldus H; Stevens M; Zijlstra W Gait Posture; 2016 Mar; 45():198-203. PubMed ID: 26979906 [TBL] [Abstract][Full Text] [Related]
23. Optimized scoring tool to quantify the functional performance during the sit-to-stand transition with a magneto-inertial measurement unit. Lepetit K; Mansour KB; Letocart A; Boudaoud S; Kinugawa K; Grosset JF; Marin F Clin Biomech (Bristol); 2019 Oct; 69():109-114. PubMed ID: 31330459 [TBL] [Abstract][Full Text] [Related]
24. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Talis VL; Grishin AA; Solopova IA; Oskanyan TL; Belenky VE; Ivanenko YP Clin Biomech (Bristol); 2008 May; 23(4):424-33. PubMed ID: 18164792 [TBL] [Abstract][Full Text] [Related]
25. Energy expenditure prediction using a miniaturized ear-worn sensor. Atallah L; Leong JJ; Lo B; Yang GZ Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349 [TBL] [Abstract][Full Text] [Related]
26. Effects of a low-volume, vigorous intensity step exercise program on functional mobility in middle-aged adults. Doheny EP; McGrath D; Ditroilo M; Mair JL; Greene BR; Caulfield B; De Vito G; Lowery MM Ann Biomed Eng; 2013 Aug; 41(8):1748-57. PubMed ID: 23568151 [TBL] [Abstract][Full Text] [Related]
27. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring. Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500 [TBL] [Abstract][Full Text] [Related]
28. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Allen FR; Ambikairajah E; Lovell NH; Celler BG Physiol Meas; 2006 Oct; 27(10):935-51. PubMed ID: 16951454 [TBL] [Abstract][Full Text] [Related]
29. Reliability and validity of the dynamic gait index in persons with chronic stroke. Jonsdottir J; Cattaneo D Arch Phys Med Rehabil; 2007 Nov; 88(11):1410-5. PubMed ID: 17964880 [TBL] [Abstract][Full Text] [Related]
30. Age impairs sit-to-walk motor performance. Buckley T; Pitsikoulis C; Barthelemy E; Hass CJ J Biomech; 2009 Oct; 42(14):2318-22. PubMed ID: 19656512 [TBL] [Abstract][Full Text] [Related]
31. A body-fixed-sensor-based analysis of power during sit-to-stand movements. Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386 [TBL] [Abstract][Full Text] [Related]
32. Inertial sensor motion analysis of gait, sit-stand transfers and step-up transfers: differentiating knee patients from healthy controls. Bolink SA; van Laarhoven SN; Lipperts M; Heyligers IC; Grimm B Physiol Meas; 2012 Nov; 33(11):1947-58. PubMed ID: 23110821 [TBL] [Abstract][Full Text] [Related]
33. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Weiss A; Herman T; Plotnik M; Brozgol M; Giladi N; Hausdorff JM Physiol Meas; 2011 Dec; 32(12):2003-18. PubMed ID: 22094550 [TBL] [Abstract][Full Text] [Related]
34. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Ganea R; Paraschiv-Ionescu A; Büla C; Rochat S; Aminian K Med Eng Phys; 2011 Nov; 33(9):1086-93. PubMed ID: 21601505 [TBL] [Abstract][Full Text] [Related]
35. Decreased trunk angular displacement during sitting down: an early feature of aging. Dubost V; Beauchet O; Manckoundia P; Herrmann F; Mourey F Phys Ther; 2005 May; 85(5):404-12. PubMed ID: 15842189 [TBL] [Abstract][Full Text] [Related]
36. Anatomical Calibration through Post-Processing of Standard Motion Tests Data. Kong W; Sessa S; Zecca M; Takanishi A Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916809 [TBL] [Abstract][Full Text] [Related]
37. Analysis of pelvic movement in the elderly during walking using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope. Ishigaki N; Kimura T; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogihara N; Nakamura K; Kato H; Ohira M; Yokokawa Y; Miyoshi K; Murakami N; Okada S; Nakamura T; Saito N J Biomech; 2011 Jun; 44(9):1788-92. PubMed ID: 21546026 [TBL] [Abstract][Full Text] [Related]
38. Identifying consistent biomechanical parameters across rising-to-walk subtasks to inform rehabilitation in practice: A systematic literature review. Jones GD; Jones GL; James DC; Thacker M; Green DA Gait Posture; 2021 Jan; 83():67-82. PubMed ID: 33091746 [TBL] [Abstract][Full Text] [Related]
39. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. Vallery H; van Asseldonk EH; Buss M; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320 [TBL] [Abstract][Full Text] [Related]
40. An evaluation of inertial sensor technology in the discrimination of human gait. Little C; Lee JB; James DA; Davison K J Sports Sci; 2013; 31(12):1312-8. PubMed ID: 23679899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]