These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23222129)

  • 21. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA.
    Rudra P; Prajapati RK; Banerjee R; Sengupta S; Mukhopadhyay J
    Nucleic Acids Res; 2015 Jul; 43(12):5855-67. PubMed ID: 25999340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli.
    Cohen SE; Lewis CA; Mooney RA; Kohanski MA; Collins JJ; Landick R; Walker GC
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15517-22. PubMed ID: 20696893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between RNA polymerase and the "core recognition element" counteract pausing.
    Vvedenskaya IO; Vahedian-Movahed H; Bird JG; Knoblauch JG; Goldman SR; Zhang Y; Ebright RH; Nickels BE
    Science; 2014 Jun; 344(6189):1285-9. PubMed ID: 24926020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. σ38-dependent promoter-proximal pausing by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2017 Apr; 45(6):3006-3016. PubMed ID: 27928053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.
    Yang X; Lewis PJ
    Transcription; 2010; 1(2):66-9. PubMed ID: 21326893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA polymerase trafficking in Bacillus subtilis cells.
    Ishikawa S; Oshima T; Kurokawa K; Kusuya Y; Ogasawara N
    J Bacteriol; 2010 Nov; 192(21):5778-87. PubMed ID: 20817769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes.
    Liu K; Hanna MM
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5012-6. PubMed ID: 7539140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA.
    Dudenhoeffer BR; Schneider H; Schweimer K; Knauer SH
    Nucleic Acids Res; 2019 Jul; 47(12):6504-6518. PubMed ID: 31127279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.
    Prajapati RK; Sengupta S; Rudra P; Mukhopadhyay J
    J Biol Chem; 2016 Jan; 291(3):1064-75. PubMed ID: 26546673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism.
    Rammohan J; Ruiz Manzano A; Garner AL; Stallings CL; Galburt EA
    Nucleic Acids Res; 2015 Mar; 43(6):3272-85. PubMed ID: 25697505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA.
    Shibata R; Bessho Y; Shinkai A; Nishimoto M; Fusatomi E; Terada T; Shirouzu M; Yokoyama S
    Biochem Biophys Res Commun; 2007 Mar; 355(1):122-8. PubMed ID: 17288993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of a Mycobacterium tuberculosis NusA-RNA complex.
    Beuth B; Pennell S; Arnvig KB; Martin SR; Taylor IA
    EMBO J; 2005 Oct; 24(20):3576-87. PubMed ID: 16193062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide identification of the context-dependent sRNA expression in Mycobacterium tuberculosis.
    Ami VKG; Balasubramanian R; Hegde SR
    BMC Genomics; 2020 Feb; 21(1):167. PubMed ID: 32070281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase.
    Ha KS; Toulokhonov I; Vassylyev DG; Landick R
    J Mol Biol; 2010 Sep; 401(5):708-25. PubMed ID: 20600118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-affinity interaction between NusA and the rrn nut site in Mycobacterium tuberculosis.
    Arnvig KB; Pennell S; Gopal B; Colston MJ
    Proc Natl Acad Sci U S A; 2004 Jun; 101(22):8325-30. PubMed ID: 15159542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-Wide Mapping of the Distribution of CarD, RNAP σ
    Landick R; Krek A; Glickman MS; Socci ND; Stallings CL
    Genom Data; 2014 Dec; 2():110-113. PubMed ID: 25089258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.
    China A; Mishra S; Nagaraja V
    PLoS One; 2011; 6(7):e21941. PubMed ID: 21760927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide proximity between RNA polymerase and DNA topoisomerase I supports transcription in Streptococcus pneumoniae.
    Ferrándiz MJ; Hernández P; de la Campa AG
    PLoS Genet; 2021 Apr; 17(4):e1009542. PubMed ID: 33930020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome.
    Ju X; Li S; Froom R; Wang L; Lilic M; Delbeau M; Campbell EA; Rock JM; Liu S
    Nature; 2024 Mar; 627(8003):424-430. PubMed ID: 38418874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nascent RNA length dictates opposing effects of NusA on antitermination.
    Wells CD; Deighan P; Brigham M; Hochschild A
    Nucleic Acids Res; 2016 Jun; 44(11):5378-89. PubMed ID: 27025650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.