These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23222730)

  • 1. Proline-dependent regulation of Clostridium difficile Stickland metabolism.
    Bouillaut L; Self WT; Sonenshein AL
    J Bacteriol; 2013 Feb; 195(4):844-54. PubMed ID: 23222730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine fermentation by
    Rizvi A; Vargas-Cuebas G; Edwards AN; DiCandia MA; Carter ZA; Lee CD; Monteiro MP; McBride SM
    Infect Immun; 2023 Oct; 91(10):e0031923. PubMed ID: 37754683
    [No Abstract]   [Full Text] [Related]  

  • 3. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation.
    Lopez CA; Beavers WN; Weiss A; Knippel RJ; Zackular JP; Chazin W; Skaar EP
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for catabolism of the abundant metabolite
    Backman LR; Huang YY; Andorfer MC; Gold B; Raines RT; Balskus EP; Drennan CL
    Elife; 2020 Mar; 9():. PubMed ID: 32180548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection.
    Wu X; Hurdle JG
    Can J Microbiol; 2014 Apr; 60(4):251-4. PubMed ID: 24693984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of the pyruvoyl-dependent proline reductase Prd from
    Behlendorf C; Diwo M; Neumann-Schaal M; Fuchs M; Körner D; Jänsch L; Faber F; Blankenfeldt W
    PNAS Nexus; 2024 Jul; 3(7):pgae249. PubMed ID: 38979079
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kochanowsky R; Carothers K; Roxas BAP; Anwar F; Viswanathan VK; Vedantam G
    J Bacteriol; 2024 Jul; 206(7):e0017524. PubMed ID: 38953644
    [No Abstract]   [Full Text] [Related]  

  • 8.
    Huang X; Johnson AE; Auchtung TA; McCullough HC; Lerma AI; Haidacher SJ; Hoch KM; Horvath TD; Haag AM; Auchtung JM
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central
    Cersosimo LM; Graham M; Monestier A; Pavao A; Worley JN; Peltier J; Dupuy B; Bry L
    bioRxiv; 2023 Aug; ():. PubMed ID: 37292778
    [No Abstract]   [Full Text] [Related]  

  • 10. Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites.
    Liu Y; Chen H; Van Treuren W; Hou BH; Higginbottom SK; Dodd D
    Nat Microbiol; 2022 May; 7(5):695-706. PubMed ID: 35505245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium.
    Majou D
    Res Microbiol; 2024; 175(7):104216. PubMed ID: 38897423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of metabolism and virulence in Clostridium difficile.
    Bouillaut L; Dubois T; Sonenshein AL; Dupuy B
    Res Microbiol; 2015 May; 166(4):375-83. PubMed ID: 25445566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary trehalose enhances virulence of epidemic Clostridium difficile.
    Collins J; Robinson C; Danhof H; Knetsch CW; van Leeuwen HC; Lawley TD; Auchtung JM; Britton RA
    Nature; 2018 Jan; 553(7688):291-294. PubMed ID: 29310122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.
    Bordeleau E; Purcell EB; Lafontaine DA; Fortier LC; Tamayo R; Burrus V
    J Bacteriol; 2015 Mar; 197(5):819-32. PubMed ID: 25512308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile.
    Dembek M; Barquist L; Boinett CJ; Cain AK; Mayho M; Lawley TD; Fairweather NF; Fagan RP
    mBio; 2015 Feb; 6(2):e02383. PubMed ID: 25714712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the hierarchical structure of the B. subtilis transcriptional regulatory network.
    Kumar S; Vendruscolo M; Singh A; Kumar D; Samal A
    Mol Biosyst; 2015 Mar; 11(3):930-41. PubMed ID: 25599335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile.
    Greathouse KL; Harris CC; Bultman SJ
    Cell Metab; 2015 Jan; 21(1):9-10. PubMed ID: 25565200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile.
    Ransom EM; Ellermeier CD; Weiss DS
    Appl Environ Microbiol; 2015 Mar; 81(5):1652-60. PubMed ID: 25527559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxin synthesis by Clostridium difficile is regulated through quorum signaling.
    Darkoh C; DuPont HL; Norris SJ; Kaplan HB
    mBio; 2015 Feb; 6(2):e02569. PubMed ID: 25714717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII.
    Willing SE; Candela T; Shaw HA; Seager Z; Mesnage S; Fagan RP; Fairweather NF
    Mol Microbiol; 2015 May; 96(3):596-608. PubMed ID: 25649385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.