These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23222730)

  • 21. Glycine metabolism in anaerobes.
    Andreesen JR
    Antonie Van Leeuwenhoek; 1994; 66(1-3):223-37. PubMed ID: 7747933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus.
    Tezuka T; Ohnishi Y
    J Bacteriol; 2014 Apr; 196(7):1369-76. PubMed ID: 24443533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE.
    Govind R; Dupuy B
    PLoS Pathog; 2012; 8(6):e1002727. PubMed ID: 22685398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis for catabolism of the abundant metabolite
    Backman LR; Huang YY; Andorfer MC; Gold B; Raines RT; Balskus EP; Drennan CL
    Elife; 2020 Mar; 9():. PubMed ID: 32180548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycine reductase of Clostridium litorale. Cloning, sequencing, and molecular analysis of the grdAB operon that contains two in-frame TGA codons for selenium incorporation.
    Kreimer S; Andreesen JR
    Eur J Biochem; 1995 Nov; 234(1):192-9. PubMed ID: 8529640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pleiotropic roles of Clostridium difficile sin locus.
    Girinathan BP; Ou J; Dupuy B; Govind R
    PLoS Pathog; 2018 Mar; 14(3):e1006940. PubMed ID: 29529083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection.
    Wu X; Hurdle JG
    Can J Microbiol; 2014 Apr; 60(4):251-4. PubMed ID: 24693984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of the pyruvoyl-dependent proline reductase Prd from
    Behlendorf C; Diwo M; Neumann-Schaal M; Fuchs M; Körner D; Jänsch L; Faber F; Blankenfeldt W
    PNAS Nexus; 2024 Jul; 3(7):pgae249. PubMed ID: 38979079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.
    Riedel T; Wetzel D; Hofmann JD; Plorin SPEO; Dannheim H; Berges M; Zimmermann O; Bunk B; Schober I; Spröer C; Liesegang H; Jahn D; Overmann J; Groß U; Neumann-Schaal M
    Int J Med Microbiol; 2017 Sep; 307(6):311-320. PubMed ID: 28619474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon.
    Stauffer LT; Stauffer GV
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():569-576. PubMed ID: 10217490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.
    Rother M; Böck A; Wyss C
    Arch Microbiol; 2001 Dec; 177(1):113-6. PubMed ID: 11797052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.
    Bakker D; Smits WK; Kuijper EJ; Corver J
    PLoS One; 2012; 7(8):e43247. PubMed ID: 22912837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology.
    Michel AM; Borrero-de Acuña JM; Molinari G; Ünal CM; Will S; Derksen E; Barthels S; Bartram W; Schrader M; Rohde M; Zhang H; Hoffmann T; Neumann-Schaal M; Bremer E; Jahn D
    Environ Microbiol; 2022 Mar; 24(3):1499-1517. PubMed ID: 35106888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.
    Antunes A; Camiade E; Monot M; Courtois E; Barbut F; Sernova NV; Rodionov DA; Martin-Verstraete I; Dupuy B
    Nucleic Acids Res; 2012 Nov; 40(21):10701-18. PubMed ID: 22989714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation.
    Neumann-Schaal M; Hofmann JD; Will SE; Schomburg D
    BMC Microbiol; 2015 Dec; 15():281. PubMed ID: 26680234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism.
    Satomura T; Ishikura M; Koyanagi T; Sakuraba H; Ohshima T; Suye S
    Appl Microbiol Biotechnol; 2015 May; 99(10):4265-75. PubMed ID: 25472442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile.
    Saujet L; Monot M; Dupuy B; Soutourina O; Martin-Verstraete I
    J Bacteriol; 2011 Jul; 193(13):3186-96. PubMed ID: 21572003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
    Dürre P; Andreesen JR
    J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive regulation of the Escherichia coli glycine cleavage enzyme system.
    Wilson RL; Steiert PS; Stauffer GV
    J Bacteriol; 1993 Feb; 175(3):902-4. PubMed ID: 8423160
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Harrison MA; Faulds-Pain A; Kaur H; Dupuy B; Henriques AO; Martin-Verstraete I; Wren BW; Dawson LF
    J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32631945
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.