These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2322284)
21. The styrene-responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetyl-coenzyme A ligase: implications for rapid metabolic coupling of the styrene upper- and lower-degradative pathways. del Peso-Santos T; Shingler V; Perera J Mol Microbiol; 2008 Jul; 69(2):317-30. PubMed ID: 18544072 [TBL] [Abstract][Full Text] [Related]
22. 3-Hydroxyphenylacetic acid induces the Burkholderia cenocepacia phenylacetic acid degradation pathway - toward understanding the contribution of aromatic catabolism to pathogenesis. Imolorhe IA; Cardona ST Front Cell Infect Microbiol; 2011; 1():14. PubMed ID: 22919580 [TBL] [Abstract][Full Text] [Related]
23. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640 [TBL] [Abstract][Full Text] [Related]
24. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. Altenschmidt U; Oswald B; Fuchs G J Bacteriol; 1991 Sep; 173(17):5494-501. PubMed ID: 1885526 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the growth of Pseudomonas putida LP on lipoate and its analogues: transport, oxidation, sulphur source, and enzyme induction. Shih JC; Rozo ML; Wright LD; McCormick DB J Gen Microbiol; 1975 Feb; 86(2):217-27. PubMed ID: 1089758 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Nogales J; Macchi R; Franchi F; Barzaghi D; Fernández C; García JL; Bertoni G; Díaz E Microbiology (Reading); 2007 Feb; 153(Pt 2):357-365. PubMed ID: 17259607 [TBL] [Abstract][Full Text] [Related]
27. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828 [TBL] [Abstract][Full Text] [Related]
28. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways. Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524 [TBL] [Abstract][Full Text] [Related]
29. A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid. Kim J; Jeon CO; Park W J Microbiol Biotechnol; 2007 Oct; 17(10):1727-32. PubMed ID: 18156794 [TBL] [Abstract][Full Text] [Related]
30. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium. Yudistira H; McClarty L; Bloodworth RA; Hammond SA; Butcher H; Mark BL; Cardona ST Microb Pathog; 2011 Sep; 51(3):186-93. PubMed ID: 21511027 [TBL] [Abstract][Full Text] [Related]
31. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. Hartline RA; Gunsalus IC J Bacteriol; 1971 May; 106(2):468-78. PubMed ID: 5573731 [TBL] [Abstract][Full Text] [Related]
32. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Ward PG; de Roo G; O'Connor KE Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037 [TBL] [Abstract][Full Text] [Related]
33. Catabolite repression of isocitrate lyase in methylamine-grown Pseudomonas MA. Effect of carbon and nitrogen sources. Bellion E; Kim YS Biochim Biophys Acta; 1978 Jul; 541(4):425-34. PubMed ID: 208642 [TBL] [Abstract][Full Text] [Related]
34. Acetyl-CoA synthetase from Pseudomonas putida U is the only acyl-CoA activating enzyme induced by acetate in this bacterium. Arias-Barrau E; Olivera ER; Sandoval A; Naharro G; Luengo JM FEMS Microbiol Lett; 2006 Jul; 260(1):36-46. PubMed ID: 16790016 [TBL] [Abstract][Full Text] [Related]
35. Effect of restricted aeration on catabolism of cholic acid by two Pseudomonas species. Smith MG; Park RJ Appl Environ Microbiol; 1984 Jul; 48(1):108-13. PubMed ID: 6476826 [TBL] [Abstract][Full Text] [Related]
36. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli. Park JM; Vinuselvi P; Lee SK Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471 [TBL] [Abstract][Full Text] [Related]
37. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium. Lochmeyer C; Koch J; Fuchs G J Bacteriol; 1992 Jun; 174(11):3621-8. PubMed ID: 1592816 [TBL] [Abstract][Full Text] [Related]
38. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose. Hokamura A; Wakida I; Miyahara Y; Tsuge T; Shiratsuchi H; Tanaka K; Matsusaki H J Biosci Bioeng; 2015 Sep; 120(3):305-10. PubMed ID: 25732207 [TBL] [Abstract][Full Text] [Related]
39. Effect of heterologous expression of phaG [(R)-3-hydroxyacyl-ACP-CoA transferase] on polyhydroxyalkanoate accumulation from the aromatic hydrocarbon phenylacetic acid in Pseudomonas species. Tobin KM; O'Leary ND; Dobson AD; O'Connor KE FEMS Microbiol Lett; 2007 Mar; 268(1):9-15. PubMed ID: 17241246 [TBL] [Abstract][Full Text] [Related]
40. The effect of a non-metabolizable analog on mandelate catabolism in Pseudomonas putida. Hegeman GD; Root RT Arch Microbiol; 1976 Oct; 110(1):19-25. PubMed ID: 1015936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]