These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2322284)
41. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Wang FQ; Liu J; Dai M; Ren ZH; Su CY; He JG Biochem Biophys Res Commun; 2007 Aug; 360(2):453-8. PubMed ID: 17612506 [TBL] [Abstract][Full Text] [Related]
42. Genetic characterization of the phenylacetyl-coenzyme A oxygenase from the aerobic phenylacetic acid degradation pathway of Escherichia coli. Fernández C; Ferrández A; Miñambres B; Díaz E; García JL Appl Environ Microbiol; 2006 Nov; 72(11):7422-6. PubMed ID: 16997993 [TBL] [Abstract][Full Text] [Related]
43. Production and regulation of a thermostable protease by Pseudomonas sp. B45. Chakraborty R; Srinivasan M Acta Microbiol Hung; 1992; 39(2):181-91. PubMed ID: 1307442 [TBL] [Abstract][Full Text] [Related]
44. Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria. Salem AR; Hacking AJ; Quayle JR Biochem J; 1973 Sep; 136(1):89-96. PubMed ID: 4772632 [TBL] [Abstract][Full Text] [Related]
45. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. Geissler JF; Harwood CS; Gibson J J Bacteriol; 1988 Apr; 170(4):1709-14. PubMed ID: 3350788 [TBL] [Abstract][Full Text] [Related]
46. The breakdown of tropic acid in Pseudomonas putida strain L. I. Utilization of various substrates; the conversion of tropic acid into phenylacetic acid. Stevens WF; Rörsch A Biochim Biophys Acta; 1971 Feb; 230(2):204-11. PubMed ID: 5573355 [No Abstract] [Full Text] [Related]
47. Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Arias S; Olivera ER; Arcos M; Naharro G; Luengo JM Environ Microbiol; 2008 Feb; 10(2):413-32. PubMed ID: 18177365 [TBL] [Abstract][Full Text] [Related]
48. Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans. Jacques NA; Hunt Al Biochim Biophys Acta; 1980 Sep; 619(3):453-70. PubMed ID: 7459362 [TBL] [Abstract][Full Text] [Related]
49. Fatty acid degradation in Caulobacter crescentus. O'Connell M; Henry S; Shapiro L J Bacteriol; 1986 Oct; 168(1):49-54. PubMed ID: 2875991 [TBL] [Abstract][Full Text] [Related]
50. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86. Choudhary A; Modak A; Apte SK; Phale PS Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285 [TBL] [Abstract][Full Text] [Related]
51. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae. Klein HP; Jahnke L J Bacteriol; 1979 Jan; 137(1):179-84. PubMed ID: 33146 [TBL] [Abstract][Full Text] [Related]
52. Effect of nature and supply of carbon sources on cellulase formation in Pseudomonas fluorescens var. cellulosa. Yamane K; Suzuki H; Hirotani M; Ozawa H; Nisizawa K J Biochem; 1970 Jan; 67(1):9-18. PubMed ID: 5416898 [No Abstract] [Full Text] [Related]
53. Aerobic metabolism of L- -lysine in a Pseudomonas. Coenzyme A-dependent acetylation of L- -lysine. Edmunds HN; Barker HA Arch Biochem Biophys; 1973 Jan; 154(1):460-70. PubMed ID: 4689786 [No Abstract] [Full Text] [Related]
54. Pyrimidine catabolism in Pseudomonas aeruginosa. Kim S; West TP FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745 [TBL] [Abstract][Full Text] [Related]
55. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. Müller C; Petruschka L; Cuypers H; Burchhardt G; Herrmann H J Bacteriol; 1996 Apr; 178(7):2030-6. PubMed ID: 8606180 [TBL] [Abstract][Full Text] [Related]
56. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. Fernández C; Díaz E; García JL Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528 [TBL] [Abstract][Full Text] [Related]
57. The evolution of the phenylacetic acid degradation pathway in bacteria. Abe-Yoshizumi R; Kamei U; Yamada A; Kimura M; Ichihara S Biosci Biotechnol Biochem; 2004 Mar; 68(3):746-8. PubMed ID: 15056912 [TBL] [Abstract][Full Text] [Related]
58. Failure of complex supplementation of minimal cultures to elicit a shift-up response in Pseudomonas putida. Collins JK; Condon S J Gen Microbiol; 1976 Apr; 93(2):227-40. PubMed ID: 932677 [TBL] [Abstract][Full Text] [Related]
59. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. Merkel SM; Eberhard AE; Gibson J; Harwood CS J Bacteriol; 1989 Jan; 171(1):1-7. PubMed ID: 2914844 [TBL] [Abstract][Full Text] [Related]
60. Styrene lower catabolic pathway in Pseudomonas fluorescens ST: identification and characterization of genes for phenylacetic acid degradation. Di Gennaro P; Ferrara S; Ronco I; Galli E; Sello G; Papacchini M; Bestetti G Arch Microbiol; 2007 Aug; 188(2):117-25. PubMed ID: 17377771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]