These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2322284)

  • 61. The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications.
    Luengo JM; García JL; Olivera ER
    Mol Microbiol; 2001 Mar; 39(6):1434-42. PubMed ID: 11260461
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy.
    Kurbatov L; Albrecht D; Herrmann H; Petruschka L
    Environ Microbiol; 2006 Mar; 8(3):466-78. PubMed ID: 16478453
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Induction of enzymes involved in fatty acid beta-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid.
    Sato S; Imamura S; Ozeki Y; Kawaguchi A
    J Biochem; 1992 Jan; 111(1):16-9. PubMed ID: 1607360
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ.
    Yuan MQ; Shi ZY; Wei XX; Wu Q; Chen SF; Chen GQ
    FEMS Microbiol Lett; 2008 Jun; 283(2):167-75. PubMed ID: 18422622
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible lysine transport system.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Mar; 246(6):1765-71. PubMed ID: 5547703
    [No Abstract]   [Full Text] [Related]  

  • 66. On the regulation of asparaginase synthesis in Pseudomonas Boreopolis 526.
    Berezov TT; Hisamov GZ; Zanin VA
    FEBS Lett; 1972 Nov; 28(1):10-2. PubMed ID: 4646867
    [No Abstract]   [Full Text] [Related]  

  • 67. An oxygenase that forms and deoxygenates toxic epoxide.
    Teufel R; Friedrich T; Fuchs G
    Nature; 2012 Mar; 483(7389):359-62. PubMed ID: 22398448
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molybdenum Involvement in Aerobic Degradation of 2-Furoic Acid by Pseudomonas putida Fu1.
    Koenig K; Andreesen JR
    Appl Environ Microbiol; 1989 Jul; 55(7):1829-34. PubMed ID: 16347977
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A comparative study in vivo of enzyme activities in batch, continuous, and phased cultures of a pseudomonad grown on phenylacetic acid.
    Kurz WG; Dawsan PS; Blakley ER
    Can J Microbiol; 1969 Jan; 15(1):27-33. PubMed ID: 5765175
    [No Abstract]   [Full Text] [Related]  

  • 70. Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thiolesters using a bacterial system.
    Zenk MH; Ulbrich B; Busse J; Stöckigt J
    Anal Biochem; 1980 Jan; 101(1):182-7. PubMed ID: 7356127
    [No Abstract]   [Full Text] [Related]  

  • 71. Evidence for distinct 3-methylcrotonyl-CoA and geranyl-CoA carboxylases in Pseudomonas citronellolis.
    Hector ML; Fall RR
    Biochem Biophys Res Commun; 1976 Aug; 71(3):746-53. PubMed ID: 962953
    [No Abstract]   [Full Text] [Related]  

  • 72. An inducible amidase from Pseudomonas striata.
    Hsiung KP; Kuan SS; Guilbault GG
    Biochem Biophys Res Commun; 1975 Oct; 66(4):1225-30. PubMed ID: 1191288
    [No Abstract]   [Full Text] [Related]  

  • 73. 3-Methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis.
    Fall RR
    Methods Enzymol; 1981; 71 Pt C():791-9. PubMed ID: 7278686
    [No Abstract]   [Full Text] [Related]  

  • 74. Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56-2.
    Hamlin JN; Bloodworth RA; Cardona ST
    BMC Microbiol; 2009 Oct; 9():222. PubMed ID: 19835630
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.
    Fernández-Valverde M; Reglero A; Martinez-Blanco H; Luengo JM
    Appl Environ Microbiol; 1993 Apr; 59(4):1149-54. PubMed ID: 8476289
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.
    Schleissner C; Olivera ER; Fernández-Valverde M; Luengo JM
    J Bacteriol; 1994 Dec; 176(24):7667-76. PubMed ID: 8002592
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.
    Fetzner S; Lingens F
    Microbiol Rev; 1994 Dec; 58(4):641-85. PubMed ID: 7854251
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro enzymatic synthesis of new penicillins containing keto acids as side chains.
    Ferrero MA; Reglero A; Martínez-Blanco H; Fernández-Valverde M; Luengo JM
    Antimicrob Agents Chemother; 1991 Sep; 35(9):1931-2. PubMed ID: 1952871
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida.
    Martinez-Blanco H; Reglero A; Luengo JM
    Biochem Biophys Res Commun; 1990 Mar; 167(3):891-7. PubMed ID: 2322284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid.
    Martínez-Blanco H; Reglero A; Rodriguez-Aparicio LB; Luengo JM
    J Biol Chem; 1990 Apr; 265(12):7084-90. PubMed ID: 2324116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.