BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23223125)

  • 1. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics.
    Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY
    Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multidimensional View of Charge Transfer Excitons at Organic Donor-Acceptor Interfaces.
    Wang T; Kafle TR; Kattel B; Chan WL
    J Am Chem Soc; 2017 Mar; 139(11):4098-4106. PubMed ID: 28248094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the coherent size, binding energy and dissociation dynamics of charge transfer excitons at organic interfaces.
    Kafle TR; Kattel B; Wang T; Chan WL
    J Phys Condens Matter; 2018 Nov; 30(45):454001. PubMed ID: 30265252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semitransparent Organic Photovoltaics Utilizing Intrinsic Charge Generation in Non-Fullerene Acceptors.
    Sharma A; Gasparini N; Markina A; Karuthedath S; Gorenflot J; Xu H; Han J; Balawi A; Liu W; Bryant D; Bertrandie J; Troughton J; Paleti SHK; Bristow H; Laquai F; Andrienko D; Baran D
    Adv Mater; 2024 Mar; 36(9):e2305367. PubMed ID: 38100279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation.
    Tamura H; Burghardt I
    J Am Chem Soc; 2013 Nov; 135(44):16364-7. PubMed ID: 24138412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb barrier for charge separation at an organic semiconductor interface.
    Muntwiler M; Yang Q; Tisdale WA; Zhu XY
    Phys Rev Lett; 2008 Nov; 101(19):196403. PubMed ID: 19113289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of spin in the kinetic control of recombination in organic photovoltaics.
    Rao A; Chow PC; GĂ©linas S; Schlenker CW; Li CZ; Yip HL; Jen AK; Ginger DS; Friend RH
    Nature; 2013 Aug; 500(7463):435-9. PubMed ID: 23925118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter.
    Liu XY; Li ZW; Fang WH; Cui G
    J Phys Chem A; 2020 Sep; 124(37):7388-7398. PubMed ID: 32853524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How quasi-free holes and electrons are generated in organic photovoltaic interfaces.
    Troisi A
    Faraday Discuss; 2013; 163():377-92; discussion 393-432. PubMed ID: 24020212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yield of exciton dissociation in a donor-acceptor photovoltaic junction.
    Li G; Nitzan A; Ratner MA
    Phys Chem Chem Phys; 2012 Nov; 14(41):14270-6. PubMed ID: 22955347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the Phthalocyanine-Fullerene Organic Photovoltaic System.
    Lee MH; Dunietz BD; Geva E
    J Phys Chem Lett; 2014 Nov; 5(21):3810-6. PubMed ID: 26278752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitons and charges at organic semiconductor heterojunctions.
    Friend RH; Phillips M; Rao A; Wilson MW; Li Z; McNeill CR
    Faraday Discuss; 2012; 155():339-48; discussion 349-56. PubMed ID: 22470984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells.
    Zang H; Xu Z; Hu B
    J Phys Chem B; 2010 May; 114(17):5704-9. PubMed ID: 20392090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor.
    Price MB; Hume PA; Ilina A; Wagner I; Tamming RR; Thorn KE; Jiao W; Goldingay A; Conaghan PJ; Lakhwani G; Davis NJLK; Wang Y; Xue P; Lu H; Chen K; Zhan X; Hodgkiss JM
    Nat Commun; 2022 May; 13(1):2827. PubMed ID: 35595764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of exciton binding and dissociation in polythiophenes: a tight binding approach.
    Bombile JH; Janik MJ; Milner ST
    Phys Chem Chem Phys; 2019 Jun; 21(22):11999-12011. PubMed ID: 31134991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delocalisation enables efficient charge generation in organic photovoltaics, even with little to no energetic offset.
    Balzer D; Kassal I
    Chem Sci; 2024 Mar; 15(13):4779-4789. PubMed ID: 38550679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.