These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23223127)

  • 1. Hot exciton dissociation in polymer solar cells.
    Grancini G; Maiuri M; Fazzi D; Petrozza A; Egelhaaf HJ; Brida D; Cerullo G; Lanzani G
    Nat Mater; 2013 Jan; 12(1):29-33. PubMed ID: 23223127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.
    Guan Z; Li HW; Zhang J; Cheng Y; Yang Q; Lo MF; Ng TW; Tsang SW; Lee CS
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21798-805. PubMed ID: 27482867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.
    Paraecattil AA; Banerji N
    J Am Chem Soc; 2014 Jan; 136(4):1472-82. PubMed ID: 24437495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield of exciton dissociation in a donor-acceptor photovoltaic junction.
    Li G; Nitzan A; Ratner MA
    Phys Chem Chem Phys; 2012 Nov; 14(41):14270-6. PubMed ID: 22955347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of exciton dissociation in donor-acceptor polymer heterojunctions.
    Sun Z; Stafström S
    J Chem Phys; 2013 Apr; 138(16):164905. PubMed ID: 23635169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cost of Converting Excitons into Free Charge Carriers in Organic Solar Cells.
    Vandewal K; Mertens S; Benduhn J; Liu Q
    J Phys Chem Lett; 2020 Jan; 11(1):129-135. PubMed ID: 31829597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.
    Huix-Rotllant M; Tamura H; Burghardt I
    J Phys Chem Lett; 2015 May; 6(9):1702-8. PubMed ID: 26263337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends.
    Dimitrov SD; Bakulin AA; Nielsen CB; Schroeder BC; Du J; Bronstein H; McCulloch I; Friend RH; Durrant JR
    J Am Chem Soc; 2012 Nov; 134(44):18189-92. PubMed ID: 23094985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The direct observation of electron backflow in an organic heterojunction formed by two n-type materials.
    Li P; Wu B; Xiang J; Yang X; Huang HS; Zhou GD; Song QL
    Phys Chem Chem Phys; 2018 Mar; 20(12):8064-8070. PubMed ID: 29513316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the efficient polaron-pair dissociation in polymer-Fullerene blends.
    Deibel C; Strobel T; Dyakonov V
    Phys Rev Lett; 2009 Jul; 103(3):036402. PubMed ID: 19659300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revelation of Interfacial Energetics in Organic Multiheterojunctions.
    Kästner C; Vandewal K; Egbe DAM; Hoppe H
    Adv Sci (Weinh); 2017 Apr; 4(4):1600331. PubMed ID: 28435774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.