These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23223185)

  • 1. Design of irreversible optical nanothermometers for thermal ablations.
    Gustafson TP; Cao Q; Wang ST; Berezin MY
    Chem Commun (Camb); 2013 Jan; 49(7):680-2. PubMed ID: 23223185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic acid based fluorescent nanothermometers.
    Ebrahimi S; Akhlaghi Y; Kompany-Zareh M; Rinnan A
    ACS Nano; 2014 Oct; 8(10):10372-82. PubMed ID: 25265370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers.
    Spicer G; Efeyan A; Adam AP; Thompson SA
    J Biophotonics; 2019 Sep; 12(9):e201900044. PubMed ID: 31034763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of fluorescent nanocapsules as ratiometric nanothermometers.
    Zhegalova NG; Dergunov SA; Wang ST; Pinkhassik E; Berezin MY
    Chemistry; 2014 Aug; 20(33):10292-7. PubMed ID: 25044240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coumarin 545: an emission reference dye with a record-low temperature coefficient for ratiometric fluorescence based temperature measurements.
    Mao D; Liu X; Qiao Q; Yin W; Zhao M; Cole JM; Cui J; Xu Z
    Analyst; 2015 Feb; 140(4):1008-13. PubMed ID: 25563387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature sensing using fluorescent nanothermometers.
    Vetrone F; Naccache R; Zamarrón A; Juarranz de la Fuente A; Sanz-Rodríguez F; Martinez Maestro L; Martín Rodriguez E; Jaque D; García Solé J; Capobianco JA
    ACS Nano; 2010 Jun; 4(6):3254-8. PubMed ID: 20441184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia.
    Maestro LM; Haro-González P; Iglesias-de la Cruz MC; Sanz-Rodríguez F; Juarranz Á; Solé JG; Jaque D
    Nanomedicine (Lond); 2013 Mar; 8(3):379-88. PubMed ID: 23199286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Quantitative DNA Nanothermometers.
    Gareau D; Desrosiers A; Vallée-Bélisle A
    Nano Lett; 2016 Jul; 16(7):3976-81. PubMed ID: 27058370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells.
    Oyama K; Takabayashi M; Takei Y; Arai S; Takeoka S; Ishiwata S; Suzuki M
    Lab Chip; 2012 May; 12(9):1591-3. PubMed ID: 22437040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range.
    Schaeffer N; Tan B; Dickinson C; Rosseinsky MJ; Laromaine A; McComb DW; Stevens MM; Wang Y; Petit L; Barentin C; Spiller DG; Cooper AI; Lévy R
    Chem Commun (Camb); 2008 Sep; (34):3986-8. PubMed ID: 18758601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage regulation of fluorescence emission of single dyes bound to gold nanoparticles.
    Cannone F; Collini M; D'Alfonso L; Baldini G; Chirico G; Tallarida G; Pallavicini P
    Nano Lett; 2007 Apr; 7(4):1070-5. PubMed ID: 17346091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Accuracy of Nanoscale Thermometers.
    Alicki R; Leitner DM
    J Phys Chem B; 2015 Jul; 119(29):9000-5. PubMed ID: 25260146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy.
    Gao H; Kam C; Chou TY; Wu MY; Zhao X; Chen S
    Nanoscale Horiz; 2020 Mar; 5(3):488-494. PubMed ID: 32118250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers.
    Uchiyama S; Matsumura Y; de Silva AP; Iwai K
    Anal Chem; 2004 Mar; 76(6):1793-8. PubMed ID: 15018585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.
    Acuna GP; Bucher M; Stein IH; Steinhauer C; Kuzyk A; Holzmeister P; Schreiber R; Moroz A; Stefani FD; Liedl T; Simmel FC; Tinnefeld P
    ACS Nano; 2012 Apr; 6(4):3189-95. PubMed ID: 22439823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing.
    Xue K; Wang C; Wang J; Lv S; Hao B; Zhu C; Tang BZ
    J Am Chem Soc; 2021 Sep; 143(35):14147-14157. PubMed ID: 34288685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence.
    Roy S; Dixit CK; Woolley R; O'Kennedy R; McDonagh C
    Nanotechnology; 2012 Aug; 23(32):325603. PubMed ID: 22825430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular thermometry by using fluorescent gold nanoclusters.
    Shang L; Stockmar F; Azadfar N; Nienhaus GU
    Angew Chem Int Ed Engl; 2013 Oct; 52(42):11154-7. PubMed ID: 24039076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer.
    Chiu MJ; Chu LK
    Phys Chem Chem Phys; 2015 Jul; 17(26):17090-100. PubMed ID: 26068797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.