BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 23223289)

  • 1. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex.
    Spillane M; Ketschek A; Donnelly CJ; Pacheco A; Twiss JL; Gallo G
    J Neurosci; 2012 Dec; 32(49):17671-89. PubMed ID: 23223289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia.
    Spillane M; Ketschek A; Jones SL; Korobova F; Marsick B; Lanier L; Svitkina T; Gallo G
    Dev Neurobiol; 2011 Sep; 71(9):747-58. PubMed ID: 21557512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia.
    Ketschek A; Gallo G
    J Neurosci; 2010 Sep; 30(36):12185-97. PubMed ID: 20826681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
    Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G
    Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.
    Ketschek A; Spillane M; Dun XP; Hardy H; Chilton J; Gallo G
    Dev Neurobiol; 2016 Oct; 76(10):1092-110. PubMed ID: 26731339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
    Sainath R; Ketschek A; Grandi L; Gallo G
    Dev Neurobiol; 2017 Apr; 77(4):454-473. PubMed ID: 27429169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.
    Hu J; Bai X; Bowen JR; Dolat L; Korobova F; Yu W; Baas PW; Svitkina T; Gallo G; Spiliotis ET
    Curr Biol; 2012 Jun; 22(12):1109-15. PubMed ID: 22608511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.
    Sainath R; Gallo G
    Dev Neurobiol; 2015 Jul; 75(7):757-77. PubMed ID: 25404503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of NGF-induced formation of axonal filopodia: NGF turns up the volume, but the song remains the same?
    Ketschek A; Spillane M; Gallo G
    Commun Integr Biol; 2011 Jan; 4(1):55-8. PubMed ID: 21509179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Estrogen and Progesterone Signaling to Dendritic Spine Formation via Cortactin/Wave1-Arp2/3 Complex.
    Uzair ID; Flamini MI; Sanchez AM
    Neuroendocrinology; 2020; 110(6):535-551. PubMed ID: 31509830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones.
    Ren Y; He Y; Brown S; Zbornik E; Mlodzianoski MJ; Ma D; Huang F; Mattoo S; Suter DM
    Mol Biol Cell; 2019 Jul; 30(15):1817-1833. PubMed ID: 31116646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of actomyosin contractility by PI3K in sensory axons.
    Orlova I; Silver L; Gallo G
    Dev Neurobiol; 2007 Dec; 67(14):1843-51. PubMed ID: 17701990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans.
    Norris AD; Dyer JO; Lundquist EA
    Neural Dev; 2009 Oct; 4():38. PubMed ID: 19799769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis.
    Spillane M; Ketschek A; Merianda TT; Twiss JL; Gallo G
    Cell Rep; 2013 Dec; 5(6):1564-75. PubMed ID: 24332852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks.
    Helgeson LA; Prendergast JG; Wagner AR; Rodnick-Smith M; Nolen BJ
    J Biol Chem; 2014 Oct; 289(42):28856-69. PubMed ID: 25160634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons.
    Moradi M; Sivadasan R; Saal L; Lüningschrör P; Dombert B; Rathod RJ; Dieterich DC; Blum R; Sendtner M
    J Cell Biol; 2017 Mar; 216(3):793-814. PubMed ID: 28246119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased expression of cortactin in the schizophrenia brain.
    Bhambhvani HP; Simmons M; Haroutunian V; Meador-Woodruff JH
    Neuroreport; 2016 Feb; 27(3):145-50. PubMed ID: 26691754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Rho-family GTPases in axon branching.
    Spillane M; Gallo G
    Small GTPases; 2014; 5():e27974. PubMed ID: 24936971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent.
    San Miguel-Ruiz JE; Letourneau PC
    J Neurosci; 2014 Apr; 34(17):5895-908. PubMed ID: 24760849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.