These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 23223289)
1. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. Spillane M; Ketschek A; Donnelly CJ; Pacheco A; Twiss JL; Gallo G J Neurosci; 2012 Dec; 32(49):17671-89. PubMed ID: 23223289 [TBL] [Abstract][Full Text] [Related]
2. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Spillane M; Ketschek A; Jones SL; Korobova F; Marsick B; Lanier L; Svitkina T; Gallo G Dev Neurobiol; 2011 Sep; 71(9):747-58. PubMed ID: 21557512 [TBL] [Abstract][Full Text] [Related]
3. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. Ketschek A; Gallo G J Neurosci; 2010 Sep; 30(36):12185-97. PubMed ID: 20826681 [TBL] [Abstract][Full Text] [Related]
4. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486 [TBL] [Abstract][Full Text] [Related]
5. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Ketschek A; Spillane M; Dun XP; Hardy H; Chilton J; Gallo G Dev Neurobiol; 2016 Oct; 76(10):1092-110. PubMed ID: 26731339 [TBL] [Abstract][Full Text] [Related]
6. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Sainath R; Ketschek A; Grandi L; Gallo G Dev Neurobiol; 2017 Apr; 77(4):454-473. PubMed ID: 27429169 [TBL] [Abstract][Full Text] [Related]
7. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Hu J; Bai X; Bowen JR; Dolat L; Korobova F; Yu W; Baas PW; Svitkina T; Gallo G; Spiliotis ET Curr Biol; 2012 Jun; 22(12):1109-15. PubMed ID: 22608511 [TBL] [Abstract][Full Text] [Related]
8. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Sainath R; Gallo G Dev Neurobiol; 2015 Jul; 75(7):757-77. PubMed ID: 25404503 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of NGF-induced formation of axonal filopodia: NGF turns up the volume, but the song remains the same? Ketschek A; Spillane M; Gallo G Commun Integr Biol; 2011 Jan; 4(1):55-8. PubMed ID: 21509179 [TBL] [Abstract][Full Text] [Related]
10. Rapid Estrogen and Progesterone Signaling to Dendritic Spine Formation via Cortactin/Wave1-Arp2/3 Complex. Uzair ID; Flamini MI; Sanchez AM Neuroendocrinology; 2020; 110(6):535-551. PubMed ID: 31509830 [TBL] [Abstract][Full Text] [Related]
11. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Ren Y; He Y; Brown S; Zbornik E; Mlodzianoski MJ; Ma D; Huang F; Mattoo S; Suter DM Mol Biol Cell; 2019 Jul; 30(15):1817-1833. PubMed ID: 31116646 [TBL] [Abstract][Full Text] [Related]
12. Regulation of actomyosin contractility by PI3K in sensory axons. Orlova I; Silver L; Gallo G Dev Neurobiol; 2007 Dec; 67(14):1843-51. PubMed ID: 17701990 [TBL] [Abstract][Full Text] [Related]
13. The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans. Norris AD; Dyer JO; Lundquist EA Neural Dev; 2009 Oct; 4():38. PubMed ID: 19799769 [TBL] [Abstract][Full Text] [Related]
14. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Spillane M; Ketschek A; Merianda TT; Twiss JL; Gallo G Cell Rep; 2013 Dec; 5(6):1564-75. PubMed ID: 24332852 [TBL] [Abstract][Full Text] [Related]
15. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. Gallo G J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819 [TBL] [Abstract][Full Text] [Related]
16. Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. Helgeson LA; Prendergast JG; Wagner AR; Rodnick-Smith M; Nolen BJ J Biol Chem; 2014 Oct; 289(42):28856-69. PubMed ID: 25160634 [TBL] [Abstract][Full Text] [Related]
17. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. Moradi M; Sivadasan R; Saal L; Lüningschrör P; Dombert B; Rathod RJ; Dieterich DC; Blum R; Sendtner M J Cell Biol; 2017 Mar; 216(3):793-814. PubMed ID: 28246119 [TBL] [Abstract][Full Text] [Related]
18. Decreased expression of cortactin in the schizophrenia brain. Bhambhvani HP; Simmons M; Haroutunian V; Meador-Woodruff JH Neuroreport; 2016 Feb; 27(3):145-50. PubMed ID: 26691754 [TBL] [Abstract][Full Text] [Related]
19. Involvement of Rho-family GTPases in axon branching. Spillane M; Gallo G Small GTPases; 2014; 5():e27974. PubMed ID: 24936971 [TBL] [Abstract][Full Text] [Related]
20. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent. San Miguel-Ruiz JE; Letourneau PC J Neurosci; 2014 Apr; 34(17):5895-908. PubMed ID: 24760849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]