These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 232233)

  • 21. Sensitization by ethylenediaminetetraacetate of Clostridium perfringens type A spores to germination by lysozyme.
    Adams DM
    J Bacteriol; 1973 Oct; 116(1):500-2. PubMed ID: 4355485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of Clostridium perfringens spores under conditions that disrupt hydrophobic interactions of biological macromolecules.
    Craven SE
    Appl Environ Microbiol; 1988 Aug; 54(8):2042-8. PubMed ID: 2902828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth retardation and prevention of Ehrlich solid tumor by Clostridium perfringens type A spores and culture supernatant.
    Lapointe JR; Portelance V
    Cancer Res; 1978 Aug; 38(8):2295-300. PubMed ID: 208766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinum spores.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1374-9. PubMed ID: 6305269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spore membrane(s) as the site of damage within heated Clostridium perfringens spores.
    Flowers RS; Adams DM
    J Bacteriol; 1976 Feb; 125(2):429-34. PubMed ID: 173708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro inhibitory effect of hen egg white lysozyme on Clostridium perfringens type A associated with broiler necrotic enteritis and its alpha-toxin production.
    Zhang G; Darius S; Smith SR; Ritchie SJ
    Lett Appl Microbiol; 2006 Feb; 42(2):138-43. PubMed ID: 16441378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the hydrophobic characteristics of Clostridium perfringens spores and spore coats by heat.
    Craven SE; Blankenship LC
    Can J Microbiol; 1987 Sep; 33(9):773-6. PubMed ID: 2891427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene.
    Chen Y; Miyata S; Makino S; Moriyama R
    J Bacteriol; 1997 May; 179(10):3181-7. PubMed ID: 9150212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clostridium perfringens type A: certain characters of epidemiologic significance.
    Chakrabarty AN; Naryan KG
    J Hyg Epidemiol Microbiol Immunol; 1979; 23(3):266-72. PubMed ID: 43344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solubilization of coat protein from Bacillus thiaminolyticus spores.
    Watabe K; Kakiuchi Y; Kondo M
    Microbios; 1975; 12(50):221-4. PubMed ID: 1160618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spore lytic enzyme released from Clostridium perfringens spores during germination.
    Ando Y
    J Bacteriol; 1979 Oct; 140(1):59-64. PubMed ID: 227836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures.
    Heredia N; Ybarra P; Hernández C; García S
    Lett Appl Microbiol; 2009 Jan; 48(1):133-9. PubMed ID: 19055630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Initiation of germination of Clostridium difficile spores by lysozyme].
    Ionesco H
    C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(6):659-61. PubMed ID: 103645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of calcium in germination of coat-modified spores of Bacillus cereus T.
    Shibata H; Miyoshi S; Osato T; Tani I; Hashimoto T
    Microbiol Immunol; 1992; 36(9):935-46. PubMed ID: 1461151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores.
    Ando Y; Tsuzuki T
    J Appl Bacteriol; 1983 Apr; 54(2):197-202. PubMed ID: 6303999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between Clostridium perfringens spores and Raw 264.7 macrophages.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2012 Feb; 18(1):148-56. PubMed ID: 22209938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Inhibition of the initiation of the germination of A type Clostridium perfringens spores by the bacteriocin from Clostridium perfringens BP6K-N5].
    Sebald M; Ionesco H
    C R Acad Hebd Seances Acad Sci D; 1974 Oct; 279(17):1503-6. PubMed ID: 4377122
    [No Abstract]   [Full Text] [Related]  

  • 38. Germination of Bacillus megaterium spores after various extraction procedures.
    Vary JC
    J Bacteriol; 1973 Nov; 116(2):797-802. PubMed ID: 4200857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of heat-injured Clostridium perfringens spores during outgrowth.
    Barach JT; Flowers RS; Adams DM
    Appl Microbiol; 1975 Nov; 30(5):873-5. PubMed ID: 173240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the bacterial spore coat. (8) On the SDS-DTT extract from Bacillus megaterium spores.
    Nishihara T; Yutsudo T; Ichikawa T; Kondo M
    Microbiol Immunol; 1981; 25(3):327-31. PubMed ID: 6789038
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.