These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23223555)

  • 1. Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature.
    Pattanasattayavong P; Ndjawa GO; Zhao K; Chou KW; Yaacobi-Gross N; O'Regan BC; Amassian A; Anthopoulos TD
    Chem Commun (Camb); 2013 May; 49(39):4154-6. PubMed ID: 23223555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature.
    Pattanasattayavong P; Yaacobi-Gross N; Zhao K; Ndjawa GO; Li J; Yan F; O'Regan BC; Amassian A; Anthopoulos TD
    Adv Mater; 2013 Mar; 25(10):1504-9. PubMed ID: 23280854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells.
    Mohan L; Ratnasingham SR; Panidi J; Daboczi M; Kim JS; Anthopoulos TD; Briscoe J; McLachlan MA; Kreouzis T
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38499-38507. PubMed ID: 34365787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells.
    Dong J; Guo J; Wang X; Dong P; Wang Z; Zhou Y; Miao Y; Zhao B; Hao Y; Wang H; Xu B; Yin S
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46373-46380. PubMed ID: 32945159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Inorganic Hydrothermally Processed Semitransparent Sb
    Kumar P; Eriksson M; Kharytonau DS; You S; Natile MM; Vomiero A
    ACS Appl Energy Mater; 2024 Feb; 7(4):1421-1432. PubMed ID: 38425380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation.
    Baviskar PK; Rondiya SR; Patil GP; Sankapal BR; Pathan HM; Chavan PG; Dzade NY
    ACS Omega; 2020 Mar; 5(12):6715-6724. PubMed ID: 32258907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors.
    Liang JW; Firdaus Y; Kang CH; Min JW; Min JH; Al Ibrahim RH; Wehbe N; Hedhili MN; Kaltsas D; Tsetseris L; Lopatin S; Zheng S; Ng TK; Anthopoulos TD; Ooi BS
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17889-17898. PubMed ID: 35404567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational Relaxation Dynamics of a Semiconductor Copper(I) Thiocyanate (CuSCN) Film as a Hole-Transporting Layer.
    Li X; Zhou D; Hao H; Chen H; Weng Y; Bian H
    J Phys Chem Lett; 2020 Jan; 11(2):548-555. PubMed ID: 31884795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates.
    Vlčková Živcová Z; Bouša M; Velický M; Frank O; Kavan L
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transport in ultrathin iron-phthalocyanine thin films under high electric fields.
    Kumar A; Singh A; Samanta S; Vasundhara K; Debnath AK; Aswal DK; Gupta SK; Yakhmi JV
    J Phys Condens Matter; 2011 Sep; 23(35):355801. PubMed ID: 21846939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band-Tail Transport of CuSCN: Origin of Hole Extraction Enhancement in Organic Photovoltaics.
    Kim M; Park S; Jeong J; Shin D; Kim J; Ryu SH; Kim KS; Lee H; Yi Y
    J Phys Chem Lett; 2016 Jul; 7(14):2856-61. PubMed ID: 27396718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the suitability of copper thiocyanate as a hole-transport layer in inverted CsSnI
    Wijesekara A; Varagnolo S; Dabera GDMR; Marshall KP; Pereira HJ; Hatton RA
    Sci Rep; 2018 Oct; 8(1):15722. PubMed ID: 30356065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport.
    Ning P; Liang J; Li L; Chen D; Qin L; Yao X; Chen H; Huang Y
    J Colloid Interface Sci; 2021 May; 590():407-414. PubMed ID: 33561590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper thiocyanate: polytypes, defects, impurities, and surfaces.
    Tsetseris L
    J Phys Condens Matter; 2016 Jul; 28(29):295801. PubMed ID: 27248787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors.
    Li Y; Sonar P; Singh SP; Soh MS; van Meurs M; Tan J
    J Am Chem Soc; 2011 Feb; 133(7):2198-204. PubMed ID: 21271705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet manipulation by an external electric field for crystalline film growth.
    Komino T; Kuwabara H; Ikeda M; Yahiro M; Takimiya K; Adachi C
    Langmuir; 2013 Jul; 29(30):9592-7. PubMed ID: 23802860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiofrequency Schottky Diodes Based on p-Doped Copper(I) Thiocyanate (CuSCN).
    Georgiadou DG; Wijeyasinghe N; Solomeshch O; Tessler N; Anthopoulos TD
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29993-29999. PubMed ID: 35647869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Record mobility in transparent p-type tin monoxide films and devices by phase engineering.
    Caraveo-Frescas JA; Nayak PK; Al-Jawhari HA; Granato DB; Schwingenschlögl U; Alshareef HN
    ACS Nano; 2013 Jun; 7(6):5160-7. PubMed ID: 23668750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of doping- and field-induced charge carrier density on the electron transport in nanocrystalline ZnO.
    Hammer MS; Rauh D; Lorrmann V; Deibel C; Dyakonov V
    Nanotechnology; 2008 Dec; 19(48):485701. PubMed ID: 21836308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.