BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23223666)

  • 1. Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array.
    Li F; Lei C; Shen Q; Li L; Wang M; Guo M; Huang Y; Nie Z; Yao S
    Nanoscale; 2013 Jan; 5(2):653-62. PubMed ID: 23223666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.
    Foo WJ; Zhang C; Ho GW
    Nanoscale; 2013 Jan; 5(2):759-64. PubMed ID: 23228941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract.
    Yallappa S; Manjanna J; Sindhe MA; Satyanarayan ND; Pramod SN; Nagaraja K
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():108-15. PubMed ID: 23562740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage.
    Pramanik A; Laha D; Bhattacharya D; Pramanik P; Karmakar P
    Colloids Surf B Biointerfaces; 2012 Aug; 96():50-5. PubMed ID: 22521682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: an investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity.
    Connolly M; Fernández-Cruz ML; Navas JM
    Chem Biol Interact; 2015 Feb; 228():57-68. PubMed ID: 25617484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro.
    Li L; Fernández-Cruz ML; Connolly M; Conde E; Fernández M; Schuster M; Navas JM
    Sci Total Environ; 2015 Feb; 505():253-60. PubMed ID: 25461026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes.
    Tamayo LA; Zapata PA; Vejar ND; Azócar MI; Gulppi MA; Zhou X; Thompson GE; Rabagliati FM; Páez MA
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():24-31. PubMed ID: 24857461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines.
    Song L; Connolly M; Fernández-Cruz ML; Vijver MG; Fernández M; Conde E; de Snoo GR; Peijnenburg WJ; Navas JM
    Nanotoxicology; 2014 Jun; 8(4):383-93. PubMed ID: 23600739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae.
    Yang L; Wang WX
    Environ Pollut; 2019 Jun; 249():116-124. PubMed ID: 30884390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action.
    Bondarenko O; Ivask A; Käkinen A; Kahru A
    Environ Pollut; 2012 Oct; 169():81-9. PubMed ID: 22694973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems.
    Ramanathan R; Field MR; O'Mullane AP; Smooker PM; Bhargava SK; Bansal V
    Nanoscale; 2013 Mar; 5(6):2300-6. PubMed ID: 23223802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions.
    Cronholm P; Karlsson HL; Hedberg J; Lowe TA; Winnberg L; Elihn K; Wallinder IO; Möller L
    Small; 2013 Apr; 9(7):970-82. PubMed ID: 23296910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing.
    Mao Z; Qing Z; Qing T; Xu F; Wen L; He X; He D; Shi H; Wang K
    Anal Chem; 2015 Jul; 87(14):7454-60. PubMed ID: 26112746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe(2)O(3) core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo.
    Wang X; Yang T; Jiao K
    Biosens Bioelectron; 2009 Dec; 25(4):668-73. PubMed ID: 19734034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens.
    El-Batal AI; Al-Hazmi NE; Mosallam FM; El-Sayyad GS
    Microb Pathog; 2018 May; 118():159-169. PubMed ID: 29530808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells.
    Cronholm P; Midander K; Karlsson HL; Elihn K; Wallinder IO; Möller L
    Nanotoxicology; 2011 Jun; 5(2):269-81. PubMed ID: 21117831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers.
    Kothapalli CR; Ramamurthi A
    Acta Biomater; 2009 Feb; 5(2):541-53. PubMed ID: 18849207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide.
    Bian X; Lu X; Jin E; Kong L; Zhang W; Wang C
    Talanta; 2010 May; 81(3):813-8. PubMed ID: 20298858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens.
    Ammar HA; Rabie GH; Mohamed E
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1947-1961. PubMed ID: 31435736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.