These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 23223828)

  • 101. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays.
    Liu R; Liu B; Guan G; Jiang C; Zhang Z
    Chem Commun (Camb); 2012 Sep; 48(75):9421-3. PubMed ID: 22892795
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Rationally designed SERS active silica coated silver nanoparticles.
    Rocks L; Faulds K; Graham D
    Chem Commun (Camb); 2011 Apr; 47(15):4415-7. PubMed ID: 21394329
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy.
    Yüksel S; Schwenkbier L; Pollok S; Weber K; Cialla-May D; Popp J
    Analyst; 2015 Nov; 140(21):7254-62. PubMed ID: 26393411
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering.
    Li ZY; Xia Y
    Nano Lett; 2010 Jan; 10(1):243-9. PubMed ID: 19958019
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling.
    Yang L; Fu C; Wang H; Xu S; Xu W
    Anal Bioanal Chem; 2017 Jan; 409(1):235-242. PubMed ID: 27796455
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level.
    Jiang X; Jiang Z; Xu T; Su S; Zhong Y; Peng F; Su Y; He Y
    Anal Chem; 2013 Mar; 85(5):2809-16. PubMed ID: 23373817
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection.
    Lee K; Irudayaraj J
    Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate.
    Gao T; Wang Y; Wang K; Zhang X; Dui J; Li G; Lou S; Zhou S
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7308-14. PubMed ID: 23829572
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Surface-enhanced Raman spectroscopy: substrate-related issues.
    Lin XM; Cui Y; Xu YH; Ren B; Tian ZQ
    Anal Bioanal Chem; 2009 Aug; 394(7):1729-45. PubMed ID: 19381618
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering.
    Stewart AF; Lee A; Ahmed A; Ip S; Kumacheva E; Walker GC
    ACS Nano; 2014 Jun; 8(6):5462-7. PubMed ID: 24826839
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Surface-enhanced Raman spectroscopy.
    Stiles PL; Dieringer JA; Shah NC; Van Duyne RP
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():601-26. PubMed ID: 20636091
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.
    Zheng J; Hu Y; Bai J; Ma C; Li J; Li Y; Shi M; Tan W; Yang R
    Anal Chem; 2014 Feb; 86(4):2205-12. PubMed ID: 24437937
    [TBL] [Abstract][Full Text] [Related]  

  • 114. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications.
    Farkhari N; Abbasian S; Moshaii A; Nikkhah M
    Colloids Surf B Biointerfaces; 2016 Dec; 148():657-664. PubMed ID: 27697740
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Ag nanorod based surface-enhanced Raman spectroscopy applied to bioanalytical sensing.
    Negri P; Dluhy RA
    J Biophotonics; 2013 Jan; 6(1):20-35. PubMed ID: 23175392
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Recent progress in SERS biosensing.
    Bantz KC; Meyer AF; Wittenberg NJ; Im H; Kurtuluş O; Lee SH; Lindquist NC; Oh SH; Haynes CL
    Phys Chem Chem Phys; 2011 Jun; 13(24):11551-67. PubMed ID: 21509385
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review.
    Luo SC; Sivashanmugan K; Liao JD; Yao CK; Peng HC
    Biosens Bioelectron; 2014 Nov; 61():232-40. PubMed ID: 24892785
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.
    Yu Z; Park Y; Chen L; Zhao B; Jung YM; Cong Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23472-80. PubMed ID: 26437325
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.
    Qi G; Wang Y; Zhang B; Sun D; Fu C; Xu W; Xu S
    Anal Bioanal Chem; 2016 Oct; 408(26):7513-20. PubMed ID: 27518716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.