These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23223850)

  • 1. Synthesis of helically twisted [1 + 1]macrocycles assisted by amidinium-carboxylate salt bridges and control of their chiroptical properties.
    Nakatani Y; Furusho Y; Yashima E
    Org Biomol Chem; 2013 Feb; 11(10):1614-23. PubMed ID: 23223850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium-carboxylate salt bridges.
    Yamada H; Wu ZQ; Furusho Y; Yashima E
    J Am Chem Soc; 2012 Jun; 134(22):9506-20. PubMed ID: 22568810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hetero-stranded double helix composed of m-diethynylbenzene-based complementary molecular strands stabilized by amidinium-carboxylate salt bridges.
    Wu ZQ; Furusho Y; Yamada H; Yashima E
    Chem Commun (Camb); 2010 Dec; 46(47):8962-4. PubMed ID: 20976318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of complementary double-stranded helical oligomers through chiral and achiral amidinium-carboxylate salt bridges and chiral amplification in their double-helix formation.
    Ito H; Ikeda M; Hasegawa T; Furusho Y; Yashima E
    J Am Chem Soc; 2011 Mar; 133(10):3419-32. PubMed ID: 21341774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-stranded supramolecular assembly through salt bridge formation between rigid and flexible amidine and carboxylic acid strands.
    Iida H; Shimoyama M; Furusho Y; Yashima E
    J Org Chem; 2010 Jan; 75(2):417-23. PubMed ID: 20025216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc carboxylate cluster formation in conjugated metallomacrocycles: evidence for templation.
    Frischmann PD; Gallant AJ; Chong JH; MacLachlan MJ
    Inorg Chem; 2008 Jan; 47(1):101-12. PubMed ID: 18067283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary double helix formation through template synthesis.
    Yamada H; Furusho Y; Ito H; Yashima E
    Chem Commun (Camb); 2010 May; 46(20):3487-9. PubMed ID: 20419181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion and carboxylic acid binding to monotopic and ditopic amidopyridine macrocycles.
    Korendovych IV; Cho M; Makhlynets OV; Butler PL; Staples RJ; Rybak-Akimova EV
    J Org Chem; 2008 Jul; 73(13):4771-82. PubMed ID: 18396906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-stranded helical polymers consisting of complementary homopolymers.
    Maeda T; Furusho Y; Sakurai S; Kumaki J; Okoshi K; Yashima E
    J Am Chem Soc; 2008 Jun; 130(25):7938-45. PubMed ID: 18510315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of various secosteroidal macrocycles by ring-closing metathesis.
    Ibrahim-Ouali M; Romero E
    Steroids; 2013 Jul; 78(7):651-61. PubMed ID: 23583599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A short route for the synthesis of "sweet" macrocycles via a click-dimerization-ring-closing metathesis approach.
    Dörner S; Westermann B
    Chem Commun (Camb); 2005 Jun; (22):2852-4. PubMed ID: 15928780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence- and chain-length-specific complementary double-helix formation.
    Ito H; Furusho Y; Hasegawa T; Yashima E
    J Am Chem Soc; 2008 Oct; 130(42):14008-15. PubMed ID: 18823119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar-based novel chiral macrocycles for inclusion applications and chiral recognition.
    Singh A; Khatri V; Malhotra S; Prasad AK
    Carbohydr Res; 2016 Feb; 421():25-32. PubMed ID: 26774875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirality- and sequence-selective successive self-sorting via specific homo- and complementary-duplex formations.
    Makiguchi W; Tanabe J; Yamada H; Iida H; Taura D; Ousaka N; Yashima E
    Nat Commun; 2015 Jun; 6():7236. PubMed ID: 26051291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanometer-scale water-soluble macrocycles from nanometer-sized amino acids.
    Gothard CM; Nowick JS
    J Org Chem; 2010 Mar; 75(6):1822-30. PubMed ID: 20020731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diastereoselective imine-bond formation through complementary double-helix formation.
    Yamada H; Furusho Y; Yashima E
    J Am Chem Soc; 2012 May; 134(17):7250-3. PubMed ID: 22506852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the chemical properties of macrocyclic [Ni(II)(2)L(μ-O(2)CR)](+) complexes on the basicity of the carboxylato coligands (L(2-) = macrocyclic N(6)S(2) ligand).
    Lehmann U; Klingele J; Lozan V; Steinfeld G; Klingele MH; Käss S; Rodenstein A; Kersting B
    Inorg Chem; 2010 Dec; 49(23):11018-29. PubMed ID: 21067175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New macrocyclic compound as chiral shift reagent for carboxylic acids.
    Ma F; Ai L; Shen X; Zhang C
    Org Lett; 2007 Jan; 9(1):125-7. PubMed ID: 17192101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of macrocyclic analogues of the neuroprotective agent glycyl-L-prolyl-L-glutamic acid (GPE).
    Harris PW; Brimble MA
    Org Biomol Chem; 2006 Jul; 4(14):2696-709. PubMed ID: 16826294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of metalated pseudorotaxane polymers with full control over the average linear density of threaded macrocycles.
    Kang S; Cetin MM; Jiang R; Clevenger ES; Mayer MF
    J Am Chem Soc; 2014 Sep; 136(36):12588-91. PubMed ID: 25153841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.