These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23223964)

  • 21. Low-temperature, self-catalyzed growth of Si nanowires.
    Cuscunà M; Convertino A; Mariucci L; Fortunato G; Felisari L; Nicotra G; Spinella C; Pecora A; Martelli F
    Nanotechnology; 2010 Jun; 21(25):255601. PubMed ID: 20508312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays.
    Cheng C; Wang TL; Feng L; Li W; Ho KM; Loy MM; Fung KK; Wang N
    Nanotechnology; 2010 Nov; 21(47):475703. PubMed ID: 21030773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of impurity doping and stress in Si/Ge and Ge/Si core-shell nanowires.
    Fukata N; Mitome M; Sekiguchi T; Bando Y; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2012 Oct; 6(10):8887-95. PubMed ID: 22947081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.
    Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G
    Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.
    Liu CY; Li WS; Chu LW; Lu MY; Tsai CJ; Chen LJ
    Nanotechnology; 2011 Feb; 22(5):055603. PubMed ID: 21178255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrically Conductive Copper Core-Shell Nanowires through Benzenethiol-Directed Assembly.
    Xiao Q; Burg JA; Zhou Y; Yan H; Wang C; Ding Y; Reed E; Miller RD; Dauskardt RH
    Nano Lett; 2018 Aug; 18(8):4900-4907. PubMed ID: 29985626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique.
    Irrera A; Artoni P; Iacona F; Pecora EF; Franzò G; Galli M; Fazio B; Boninelli S; Priolo F
    Nanotechnology; 2012 Feb; 23(7):075204. PubMed ID: 22273546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct growth of core-shell SiC-SiO(2) nanowires and field emission characteristics.
    Ryu Y; Tak Y; Yong K
    Nanotechnology; 2005 Jul; 16(7):S370-4. PubMed ID: 21727454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.
    Hetzel M; Lugstein A; Zeiner C; Wójcik T; Pongratz P; Bertagnolli E
    Nanotechnology; 2011 Sep; 22(39):395601. PubMed ID: 21891844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of Si epoxide defects in Si nanowires: a mixed reactive force field/DFT study.
    Schoeters B; Neyts EC; Khalilov U; Pourtois G; Partoens B
    Phys Chem Chem Phys; 2013 Sep; 15(36):15091-7. PubMed ID: 23925698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning photoemission spectromicroscopic study of 4-nm ultrathin SiO(3.4) protrusions probe-induced on the native SiO(2) layer.
    Devan RS; Gao SY; Lin YR; Cheng SR; Hsu CE; Chen CH; Shiu HW; Liou Y; Ma YR
    Microsc Microanal; 2011 Dec; 17(6):944-9. PubMed ID: 22008643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires.
    Hu J; Bando Y; Liu Z; Sekiguchi T; Golberg D; Zhan J
    J Am Chem Soc; 2003 Sep; 125(37):11306-13. PubMed ID: 16220953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage.
    Chen H; Xu J; Chen PC; Fang X; Qiu J; Fu Y; Zhou C
    ACS Nano; 2011 Oct; 5(10):8383-90. PubMed ID: 21942645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long term stability of nanowire nanoelectronics in physiological environments.
    Zhou W; Dai X; Fu TM; Xie C; Liu J; Lieber CM
    Nano Lett; 2014 Mar; 14(3):1614-9. PubMed ID: 24479700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of SiC/SiO
    Chen BY; Chi CC; Hsu WK; Ouyang H
    Sci Rep; 2021 Jan; 11(1):233. PubMed ID: 33420336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological evolution and ordered quantum structure formation in heteroepitaxial core--shell nanowires.
    Guo JY; Zhang YW; Shenoy VB
    ACS Nano; 2010 Aug; 4(8):4455-62. PubMed ID: 20681529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boron distributions in individual core-shell Ge/Si and Si/Ge heterostructured nanowires.
    Han B; Shimizu Y; Wipakorn J; Nishibe K; Tu Y; Inoue K; Fukata N; Nagai Y
    Nanoscale; 2016 Dec; 8(47):19811-19815. PubMed ID: 27874128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Si/SiO
    Li X; Chen T; Zhou B; Liu G; Shi T; Wen L; Cao H; Wang Y
    Nanotechnology; 2017 May; 28(18):185402. PubMed ID: 28291014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-temperature stability of silicon carbide nanowires.
    Shim HW; Kuppers JD; Huang H
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3999-4002. PubMed ID: 19049165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.